The Human Variome relates to genomic mutations and their effects on particular phenotypes. This critical life sciences research field has grown greatly in recent years, mostly due to the appearance of projects such as the Human Variome Project or the European GEN2PHEN Project. Nonetheless, locus-specific mutation databases and included variants are far from being standardized and widely used in the research community workflow. With WAVe, we offer centralized and transparent access to these databases, combined with the integration of found variants in a single system that is enriched with the most relevant gene-related information in a user-friendly web-based workspace.


WAVe provides a comprehensive set of features that will improve bioligists’ workflow when researching in the genomic variation field.


Searching for genes only requires that users start typing the gene HGNC-approved symbol in any of the available search boxes. This event will trigger the automatic suggestion system that will offer various solutions based on users’ input. Following one of the suggestions leads directly to the gene view interface. When a suggestion is not accepted and there is more than one match, WAVe will display the gene browse interface, containing only the results matching the provided query.


Querying for * lists all genes as well as available LSDBs and variants for each gene. In this gene browse scenario, searches for a particular gene can be performed, in real time, by typing in the table search box. By clicking in one of the genes, users are sent to the gene view interface.


The gene view interface is the main WAVe workspace. The layout is divided in two main areas: the sidebar and the content zone. The sidebar displays minimal gene information on top – gene HGNC symbol, name and locus – and the navigation tree, which is WAVe’s user interface key element, at the bottom. The navigation tree is organized in nodes, each referring to a distinct data type: each node leaf links directly to a page containing information regarding a specific topic. Pages linked in each leaf appear in the content zone. This enables loading external applications without leaving WAVe’s interface and, thus, without losing focus with ongoing research.


Programmatic access to data is also available. The gene tree is available as an easily-parsable feed. Feeds are obtained by appending the atom tag (or other format: rss, json) to the end of the gene view address. For instance, BRCA2 Atom feed is available at http://bioinformatics.ua.pt/WAVe/gene/BRCA2/atom .
WAVe also provides an RSS API for variant access. With this, you have programmable access to all available variants for a given gene. For instance, BRCA2 variants (from multiple LSDBs) are at http://bioinformatics.ua.pt/wave/variant/BRCA2/atom. In addition to the variant description, WAve points to the original LSDB containing the variant.
This WAVe makes WAVe the only platform capable of providing aggregated variant listings through both visual and programmable access.


We highly appreciate any feedback you can provide regarding WAVe and the genomic variation field. To do this, you can simply send an e-mail to pedrolopes@ua.pt. Thank you.