
COEUS: AN APPLICATION
FRAMEWORK FOR ENHANCED

SERVICE COMPOSITION

The Semantic Web has provided bioinformatics developers with better paradigms,

standards and technologies to solve common problems such as data heterogeneity,

diversity or distribution. The Bio2RDF warehouse or the Biocatalogue library, amongst

other systems, have shown how valuable semantic web technologies can be for the general

life sciences software field. However, semantic web’s potential is still out of reach of the

bioinformatics developers’ community. There is a clear absence of tools to enhance the

migration of existing platforms to new environments, to ease the development of

information systems from scratch or to disrupt with past strategies by deploying fully

interoperable software.

Hence the introduction of COEUS, a framework to tackle these challenges by

empowering developers with a “Semantic Web in a box” software stack, and ensuing a

more agile development workflow for new semantic web systems. The COEUS open-source

project is available at http://bioinformatics.ua.pt/coeus/.

This chapter discusses the devised strategies and their implementation, leading to

COEUS development. Starting with the demand for more modular and dynamic software

packages in the life sciences, we move on to a brief assessment of semantic web use in

bioinformatics, highlighting the opportunities for a new kind of application development

strategy that can empower the next generation of bioinformatics software.

Dynamic Software Infrastructures for Life
Sciences
Reusable Assets
The cornerstone of current software development is the idea of “reusing instead of

rewriting”. This rather basic proposition is applied not only to the construction of data

models, where defining new schemas or entire structures is a complex research practice,

but also to the set of programming toolkits being used. Regarding the latter, the vast

number of applications, libraries, services or packages, makes it very easy for developers to

find a solution to an implementation problem. Even when they end up implementing the

desired feature from scratch, they do so acknowledging the already existing algorithms,

their limitations and their strengths.

Common modeling, service access, knowledge acquisition or data exploitation problems

have been solved before. Associated with the facility in finding existing solutions,

developers are now endowed with tools to quickly integrate miscellaneous libraries in their

projects, such as Maven1, Node.JS NPM2 or Ruby’s Gems3. Hence, the software development

process is streamlined to a three-stage identify-assess-reuse practice.

As stated in section 3.1, this is leveraging the use of rapid application development

frameworks. Likewise, the bioinformatics field is also becoming aware of these quicker

application deployment strategies, and new toolkits are starting to emerge.

Evaluating Rapid Application Development in Bioinformatics
Rapid Application Development (RAD) is a strategy for generating entire application,

including databases, code and services, from a set of configuration files. This permits

launching new tools much faster than otherwise, thus reducing the “time-to-market” cost.

When assessing RAD strategies, the major conclusion is the traditional poor component

availability. Available frameworks either generate one or two good components (going

feature-deep in each one) or generate multiple components with basic functionality (going

for a wider coverage breadth). Nevertheless, these frameworks permit creating complete

application stubs in no time, making them suitable for initial prototypes or low-end

solutions.

1
 http://maven.apache.org/

2
 http://npmjs.org/

3
 http://rubygems.org/

The Molgenis framework is a “generic, open source, software toolkit” to quickly

produce bioinformatics user-friendly and scalable software. This toolkit provides

developers with a simple modelling language to design data structures and user interfaces.

From two valid configuration files, Molgenis’ generator creates a "feature-rich, ready-to-

use web application including database, user interfaces, exchange formats, and scriptable

interfaces".

The automatic code generation tools are one of Molgenis’ highlights. They reduce the

amount of code one has to write by hand. The template-based nature of available methods

leverages a straightforward generation process, easing the transformation from the

configuration file to SQL, Java, R or HTML code.

Molgenis’ use has been growing over the last few years. Biomedical applications for

miscellaneous areas, including genome-wide association studies, proteomics, biobanking or

next-generation sequencing, have already been launched using this toolkit.

Bioinformaticians usually seek Molgenis’ great adaptability. This allows them to generate

entire application structures much faster when the resulting skeleton can be optimized or

to iteratively generate solutions until the final system is ready.

ProteoWizard, BioJava and AIBench are some of Molgenis competitors. ProteoWizard is

a C++ framework very similar to Molgenis in the sense that it provides a comprehensive set

of features to speed up the development of applications requiring some kind of proteomics

data manipulation. As the name states, BioJava is a set of libraries that can be used in any

Java application project and that reduce the complexity of dealing with biological data.

This widely used package facilitates reading and parsing data, performing simple statistical

and analytical tasks and accessing common bioinformatics features such as sequence

alignment or protein structure exploration. At last, AIBench was initially built as a rapid

application development framework for data mining, but its use is being extended to

biomedicine. Also in Java, AIBench enables code annotations, scripting and custom plugins

to be included in a predefined application skeleton, reducing the huge effort of

implementing desktop application interfaces from scratch.

Combining rapid service development with semantic technologies is SADI’s framework

goal, which promotes guidelines and ontologies to exploit the composition of semantic web

services, through a straightforward strategy. Input and output interfaces accept and

expose data in RDF format: service data are OWL class instances. Inward data are enriched

with new relationships until they match the desired output, they are then sent as the

service reply, streamlining the web service dataflow. SADI includes patterns for describing

the service interfaces and enables the creation of client applications with “strikingly rich

semantic behaviours”. Henceforth, it is clear that rapid application development strategies

must be mixed with the semantic web paradigm to deploy richer bioinformatics application

frameworks.

Towards a Semantics-enabled Architecture
Research from Slater et al. and Kozhenkov et al. , among others, analyses current software

development strategies, concluding that there is a clear need for new approaches adopting

distinct ideals and based on a different set of skills. Like next-generation sequencing

hardware improves genetic reads in a multitude of ways, the Semantic Web may be seen as

a next-generation software development paradigm, capable of breeding a new wave of

biomedical software solutions. However, despite its growing momentum, semantic web

strategies are still subject of a slow adoption process.

Taking in account the need for novel bioinformatics software with improved

integration and interoperability features , the use of semantic web technologies to tackle

innate life sciences challenges will permit that entirely different computational systems

exchange and accurately interpret knowledge. With an ever-increasing amount of data,

produced in both novel software and hardware platforms, and a prolific research

community constantly demanding best-of-breed tools, this field is evolving exponentially

and reaching user types far beyond the traditional wet-lab biologist. Semantic knowledge

discovery, reasoning and inference are now a part of state-of-the-art research.

Despite the key role that bioinformatics software and hardware developments have

played over the last three decades, the life sciences technological ecosystem is still

fragmented and characterized by immeasurable entropy. The majority of data are scattered

through closed independent systems, disregarding any good-practice for integration and

interoperability features. Furthermore, even in notable state-of-the-art tools, the

overwhelming scale and complexity of collected data and features generates an

information overload, making it impossible for researchers to grasp any deep insights from

available knowledge.

Interoperable bioscience data are essential to keep up with the bioinformatics evolution

momentum and extract the added value from the vast swathes of digital life sciences data.

This demands new strategies for getting the data out of primitive systems, using

independent formats and non-standard terminologies, into a state-of-the-art open

knowledge federation environment.

Furthermore, reusable data and reusable components are key for reproducible research

and easily accessible knowledge. Making new systems part of a bigger network, such as the

Linked Open Data cloud, will ultimately result in better access to data, promoting research

collaboration and further increasing community buy-in.

To overcome these challenges we envisaged a new application development paradigm

that boosts the integration of distributed and heterogeneous data and promotes

interoperability through multiple application programming interfaces. Tying all this with

semantic web developments results in a powerful methodology for improving existing

biomedical software and streamlines the deployment workflow.

An Architecture for Knowledge Federation
Combining biomedical software engineering with semantic web ideals, we can pinpoint two

broad and distinct approaches for enriching existing datasets with integrated connections

amongst resources. On the one hand, there are strategies based on data warehousing

techniques, centralizing content from heterogeneous resources. On the other hand, there

are solutions involving integrated access to distributed data sources, federating available

content through a middleware layer. Both approaches are shown in Figure 0-1.

In opposition to warehousing, federation strategies acknowledge the distinct setup of

each specialized instance. The integration of distributed resources requires some kind of

middleware, a federation layer, to connect data available in each federated instance. Once

this layer is deployed, data access becomes transparent. Even though performance may be

poorer than in warehousing solutions, federation strategies can easily scale to

accommodate distinct ontologies, regular data updates in each independent node and long-

term improvements. Federation is hidden from end-users as they can access data in the

same way as with warehousing repositories. Moreover, the federation layer handles query

distribution and deals directly with each repository native API.

Furthermore, federation is innate to Semantic Web technologies and fits well within the

biomedical applications domain. The SPARQL specification was designed from scratch to

ease this process. Publishing data through SPARQL endpoint enables access to data in more

advanced ways than traditional SQL. Not only does this permit development of general

federation tools, but it also promotes the creation of more complex software frameworks,

sustained by native Semantic Web federation.

Figure 0-1. 1) Warehouse integration strategy, multiple resources are replicated in a central
warehouse for prompt access to knowledge. 2) Federation strategy based on SPARQL endpoints
providing direct access to each resource.

Semantic Web State of the Art in Bioinformatics
The semantic web migration process, moving systems from flat-file or relational

environments to semantic infrastructures, has been the subject of extensive research. The

major emphasis is given to the development of translation languages, enabling the

mapping from relational connections to the semantic web graph. On the one hand, basic

languages map tables and columns to a new model following a proposed ontology. On the

other hand, more innovative systems permit the extension of existing data connections,

enriching their meaning and expressiveness. In this topic, two approaches are common.

Some mappings are dedicated to forming new triple sets from existing relational databases

whereas other languages enable publishing semantic views over relational data.

These languages are complemented with translation applications, using the newly

mapped model to provide a semantic data version. Triplify , Virtuoso4 and D2R server have

managed to employ new techniques that allow for semantic views and provide access to

4
 http://virtuoso.openlinksw.com/

SPARQL FEDERATION

1
WAREHOUSE

2
FEDERATION

KNOWLEDGE KNOWLEDGE

existing relational data. Instances with DBLP 5 , SIDER 6 , DrugBank 7 , DailyMed 8 and

Diseasome9 data were created using D2R, enabling SPARQL data integration endpoints.

Despite these advances in migration technology, the resulting systems are just a

semantic version of pre-existing relational data. Thus, there is a lack of data insertion and

triplification features, which are challenging tasks being backed by large-scale research

projects.

Bio2RDF or DBPedia collect a gigantic amount of data in outsized triplestores. With the

same decision-support goals as traditional warehouse systems, these applications adopt

advanced extract-transform-load techniques to triplify existing data into a semantic

format, storing them in triplestores. DBPedia offers a triplified Wikipedia version,

containing its entire dataset, along with multilanguage support and category organization.

Bio2RDF’s focused biology environment enables it to be a remarkable life sciences semantic

database, collecting data pointers from a wide array of domains, from genes to proteins up

to pathways and publications.

Despite these large semantic systems’ quality, they are not fit for common niche fields.

Whilst Bio2RDF diversity and size will expand its use to the level of systems like UniProt or

BioMART, these features also make it less suitable for smaller and restricted environments

such as specific gene, disease or model organism information systems. Even if new software

includes connections to Bio2RDF data, the system’s core will be composed of small datasets

and other precise information bits gathered from external databases or wet-lab file systems.

S3DB proposes a new data management model for integrating biomedical knowledge

capable of helping in miscellaneous niche environments. S3DB provides developers with

tools to construct their own ad-hoc Semantic Web applications, instead of beginning the

development with an empty box. The proposed solutions for managing ontologies or

locked data repositories make it adequate for closed environments. Data integration

features are still very primitive, though. In these areas, it is imperative to provide

mechanisms for importing data in various formats into the triple store, a process essential

for obtaining enhanced collections of data.

5
 http://www4.wiwiss.fu-berlin.de/dblp/

6
 http://www4.wiwiss.fu-berlin.de/sider/

7
 http://www4.wiwiss.fu-berlin.de/drugbank/

8
 http://www4.wiwiss.fu-berlin.de/dailymed/

9
 http://www4.wiwiss.fu-berlin.de/diseasome/

Opportunities for Building a Semantic Web Framework
Evolving current applications to the semantic web ecosystem is a necessary leap in

upcoming years. With the currently available tools, successful migrations are limited to a

below-reasonable level. Moreover, developers must take in account the needs of future

software: the integration and interoperability challenge must be tackled from the start. The

combination of these factors with biomedical software requirements demands a new kind

of application framework, thriving under the vast potential and opportunities brought

about by semantic web technologies. The reasoning for developing COEUS is summarized

next, in four overarching integration and interoperability opportunities.

 As previously stated, the principles for rapid application development practices,

already common in the general computer science field, are gaining traction within

the bioinformatics community. With this methodology, the opportunity arises to

promote the use of streamlined development packages, libraries and frameworks.

 The adoption of semantic web integration strategies, based on advanced

knowledge triplification procedures, is a vital opportunity to improve existing

Extract-Transform-Load tasks in data warehousing. Easing the transition process

from CSV files or relational databases into semantic web triplestores is the

cornerstone for publishing knowledge online.

 With data being generated at a very high throughput rate, connecting it and making

it available is essential to fully explore and understand its inner wisdom. Hence,

there is a clear opportunity to employ new semantic interoperability standards,

like SPARQL or LinkedData, to enhance knowledge sharing, broadcasting, reasoning

and inference.

 Federated data networks will play a key role in the future dissemination of

knowledge from any science field. The demand of more integrative and

interoperable data leverages the opportunity to build new systems where these

features are standard and available by default.

With COEUS we introduce a solution that embraces these opportunities, being able to

scale and adapt to future unforeseen scenarios. The COEUS framework offers flexible

schema mappings for data integration and future-proof interoperability, making it the

ideal candidate for improving the complex process of developing new semantic web

application ecosystems.

Requirements Analysis and Design Issues
Leveraging on the aforementioned opportunities to build a new semantic web-based

environment, we conducted a careful analysis of the requirements behind such system.

These requirements are generically entailed in the following guidelines: (R1) enhanced

rapid application development, (R2) suitable integrative ontology, (R3) semantic data

management, (R4) flexible integration, (R5) customizable web applications, (R6)

interoperability with software tools, (R7) federation architectures and (R8) open-source

availability. Next, a lightweight overview of these requirements is introduced:

 (R1) Enhanced rapid application development. The COEUS framework must

bring rapid application development in bioinformatics one step further. This

should be particularly evident in the adoption of semantic web technologies and

in the bioinformatics-driven platform design.

- (R1.1) Streamlined instance configuration. The configuration of new

COEUS instances must be streamlined to require a minimal set of

instructions.

- (R1.2) Simple instance boot. COEUS instance creation process must be

simplified and the majority of tasks automated to enable the quick

launch of new applications.

- (R1.3) Usable in any programming environment. The resulting

framework must make data available for any client-side development

environment.

 (R2) Suitable integrative ontology. COEUS’ development must include the

design of a new integration ontology, tailored to the devised integration

strategies.

- (R2.1) Rich resource description. The description of integrated

resources must be as rich as possible to allow for a flexible integration

environment.

- (R2.2) Ontology-based data mappings. COEUS’ ontology for resource

description must enable the mapping of non-semantic data into any

ontology from any field.

 (R3) Semantic data management. COEUS must be supported by a semantic

knowledge base, thus enabling data management through a semantic layer.

- (R3.1) Triplestore knowledge base. COEUS’ knowledge base should be

supported by a semantic triplestore, whether through in-memory, file-

based on relational-based strategies.

- (R3.2) Semantic data translation. COEUS must enable the translation of

data from existing non-semantic environments into its internal semantic

knowledge base.

- (R3.3) Knowledge reasoning and inference. As an integral part of any

semantic web system, features must be available in COEUS to permit the

effective reasoning over acquired knowledge and the inference of new

data relationships.

 (R4) Flexible integration. Resource integration in COEUS must be a flexible

process to allow the integration of data from distributed and heterogeneous

sources.

- (R4.1) Data loading from SQL, CSV, XML or SPARQL sources.

Automated integration of data from CSV or XML files, or from SQL or

SPARQL query results is mandatory.

- (R4.2) Extensible integration architecture. In addition to (R4.1), COEUS

must support the creation of custom integration plugins.

 (R5) Customizable web applications. COEUS must empower the eased creation

of client-side web applications, through normalized infrastructures.

- (R5.1) Internal API. An internal Java API must be available to enable the

creation of client-side Java applications.

- (R5.2) JavaScript API. Modern web applications rely on advanced

JavaScript interactions. Therefore, COEUS must also include a direct

JavaScript interface to its knowledge base.

 (R6) Interoperability with software tools. The COEUS framework must assure

interoperability with any external system.

- (R6.1) REST API. A generic REST API must be made available to permit

the use of data from COEUS’ knowledge base within any external system.

 (R7) Federation architectures. COEUS’ setup must support the creation of

intelligent knowledge networks through the federation of data collected in each

instance.

- (R7.1) SPARQL API. A SPARQL endpoint must be accessible to allow

direct queries to each COEUS instance knowledge base.

- (R7.2) LinkedData API. A view adopting the LinkedData principles must

be publicly available.

 (R8) Open-source availability. All developed COEUS components must be

provided through open-source licensing schemes.

Table 0-1 summarizes the relationships between these requirements and the problems

encountered during our investigative literature analysis.

Table 0-1. Summary of relationships between the defined requirements and the issues overviewed in
the researched scientific literature.

 R1 R2 R3 R4 R5 R6 R7 R8
Swertz et al.

Wilkinson et al.

Cannata et al.

Slater et al.

Kozhenkov et al.

Hepp et al.

Cannata et al.

Marx et al.

Cheung et al.

Hazber et al.

COEUS: A Semantic Web Application
Framework
Semantic Web tools enable translucent relationships amongst data. The semantic web itself

is a truly intelligent data network, with rich connections allowing for a better

understanding of available knowledge. However, despite the immense possibilities

surrounding semantic web technologies, its adoption has been dimmer than anticipated.

Whilst stakeholders from all domains acknowledge the benefits of having a fully semantic

information system, the difficult transition from traditional flat-file or relational database

supported systems to the semantic web is a challenging roadblock.

Framework Setup
COEUS’ “Semantic Web in a box” strategy envisages the inclusion, in a single package, of all

the tools required to launch a new Semantic Web based application. In addition to this,

COEUS’ setup must also account for a flexible and scalable deployment environment. Many

of the architectural decisions observed when implementing this framework had these

ideals in mind. Hence, various tools and platforms were evaluated in the search for the

optimal combination of components and integration/interoperability strategies that could

transform semantic web rapid application deployment.

To better explain COEUS’ strategy we employ a naming strategy that adopts a gardening

metaphor. A single COEUS instance is entitled as Knowledge Seed, or simply seed. In

scenarios with multiple seeds deployed in a true application ecosystem, this federated

structure is envisaged as a Knowledge Garden.

Knowledge Representation
As mentioned in chapter 3, data in the Semantic Web are stored in formal triple statements:

Subject-Predicate-Object. These statements employ different vocabularies and languages to

identify each component. We can make a simple analogy to basic sentences with a subject,

a verb representing action or meaning - the predicate, and what relates to the subject -

the object. One last thing to consider is that predicates relate to object or data properties.

Figure 0-2 highlights this division in a common sentence matched to a single statement.

Figure 0-2. Sample triple statement, subject – predicate – object.

Taking in account the multitude of data models we can integrate within a single COEUS

instance, the general semantic web knowledge representation strategy is more than fit.

This allows us to map any content from CSV columns or SQL query results into a set o RDF

statements.

For the knowledge storage framework component we identified and assessed various

RDF management tools, as briefly covered in Table 0-2. The Jena framework is the most

suitable alternative for COEUS’ knowledge base. Its Java-based nature, easy integration with

other tools and extensibility, make it ideal for use in a component-based framework. Jena's

SUBJECT

BACK TO THE FUTURE HAS DIRECTOR ROBERT ZEMECKIS
PREDICATE OBJECT

API has basic support for reading and writing triple statements in Java in an in-memory or

database-supported triplestore.

Table 0-2. Knowledge storage and representation technologies comparison.

FRAMEWORK DESCRIPTION

Jena10

Widely used semantic web package for Java. Includes several features to easily

deploy new applications, including support for SPARQL queries, RDF and OWL

APIs, and inference. Provides multiple storage and reasoning mechanisms and

also allows the integration of custom data processing mechanisms.

Sesame11

Widely used RDF framework and server. Includes support for SPARQL queries

and an HTTP server interface. It is packaged with multiple storage and reasoning

mechanisms and also allows the integration of custom mechanisms.

Virtuoso12

Widely used commercial solution for semantic web development. Includes a

platform agnostic solution to access data through SPARQL queries, manage

knowledge bases and integrate heterogeneous resources.

Redland13
Collection of RDF libraries for C, with bindings for various other languages.

Provides RDF API, parsers, and query interfaces.

LinqToRDF

Semantic Web framework for.NET built on the Microsoft Language-Integrated

Query (LINQ) Framework (language-independent query and data processing

system).

OWL API14

OWL API and implementation for Java. Includes an OWL API that is built on the

functional syntax of OWL 2 and contains a common interface for many other

reasoners.

Components
The basic COEUS setup requires a Java application server (Tomcat is recommended) and a

relational database (for the triplestore backend). All the other necessary components are

included in COEUS package, further facilitating the creation of new systems from scratch.

Figure 0-3 highlights the component interactions in each standalone instance and Table

0-3 describes all used components and their purpose within the framework.

10

 http://jena.apache.org/
11

 http://www.openrdf.org
12

 http://virtuoso.openlinksw.com/
13

 http://librdf.org/
14

 http://owlapi.sourceforge.net/

Figure 0-3. COEUS seed component interactions diagram. 1) External data are integrated from
multiple sources using the available CSV, XML, SQL or SPARQL connectors. 2) The abstraction engine
translates read data into the seed knowledge base. 3) COEUS internal triplestore is supported by Jena
with a MySQL relational database backend. 4) Data in the knowledge base are accessed through the
application engine for the Java and REST APIs. 5) The SPARQL endpoint, provided by Joseki, allows
direct access to the knowledge base and is used by pubby to enable the LinkedData views.

JavaREST
pubby

LinkedData
Joseki
SPARQL

ABSTRACTION ENGINE

6
CLIENT APPLICATIONS

5
API

4
APPLICATION ENGINE

3
KNOWLEDGE BASE

2
INTEGRATION ENGINE

1
EXTERNAL SOURCES

CSV SQLXML SPARQL

Table 0-3. COEUS’ framework libraries listing and descriptions.

LIBRARY DESCRIPTION

Jena

Jena is used as the core semantic web package within COEUS, mediating input

access to the knowledge base when building the triplestore and output access

to the Java API.

Joseki15 Provides the SPARQL endpoint functionality.

Pubby16 Provides the LinkedData interface.

Sparql.js JavaScript library to query remote SPARQL endpoints.

Tomcat Java application server.

MySQL Backend support to the Jena SDB triplestore.

Architectures
COEUS’ application models and internal seed architecture can be combined in a single view,

highlighting the knowledge flow from the data integration connectors to the

interoperability API, detailed further in this chapter. The architecture for a single seed is

show in Figure 0-4.

Figure 0-4. COEUS architecture for a single seed. 1) Data integration connectors for CSV, XML, SQL and
SPARQL enable the triplification of data into each seed’s semantic storage. 2) Data are selected from
each external resource to match specific ontology predicates, generating a rich knowledge base. 3)
COEUS central knowledge base includes the triplestore data repository and respective data access
methods. 4) Acquired data are available through COEUS API, using Java methods, REST services, a
SPARQL endpoint and the LinkedData view.

15

 http://www.joseki.org/
16

 http://www4.wiwiss.fu-berlin.de/pubby/

API

DATA INTEGRATION CONNECTORS

dc:title rdfs:label
owl:imports

KNOWLEDGE BASE

CSV XML SQL SPARQL

REST JAVA LDATA SPARQL

foaf:name

3

1

2

4

To further increase COEUS’ innate flexibility, multiple seeds can be combined in a

knowledge garden, providing a virtual holistic access layer to collected knowledge,

regardless of its original location (Figure 0-5).

Figure 0-5. COEUS’ garden architecture overview. 1) With one or more seeds in place, the COEUS
platform enables a knowledge federation layer. 2) The distributed knowledge federation layer is
capable of answering specific research questions. 3) This distributed entry point enables the
deployment of multiple applications to web, desktop or mobile environments.

Application Models
The COEUS framework can be used to deploy distinct application models (Figure 0-6). On

the one hand, a seed can accommodate multiple end-user applications, on distinct devices

for instance. This permits that a single centralized data source can be built to support any

number of web, desktop or mobile applications. On the other hand, multiple specialized

seeds can be connected to supply a single holistic application. In this strategy all seeds

work independently, and can be seen as nodes in a data sources network, providing access

to an overarching tool. Along with these opposite strategies, hybrid architectures are also

possible, combining multiple applications and seeds in a distributed data and applications

ecosystem.

1

KNOWLEDGE FEDERATION LAYER
2

3

API

DATA INTEGRATION CONNECTORS

KNOWLEDGE BASE

CSV XML SQL SPARQL

REST JAVA LDATA SPARQL

API

DATA INTEGRATION CONNECTORS

KNOWLEDGE
BASE

CSV XML SQL SPARQL

REST JAVA LDATA SPARQL API

DATA INTEGRATION CONNECTORS

KNOWLEDGE BASE

CSV XML SQL SPARQL

REST JAVA LDATA SPARQL

Figure 0-6. Basic COEUS application models. 1) One to many: one seed provides data to multiple client
applications. 2) Many to one: using SPARQL federation multiple seeds are dynamically interlinked and
accessed through a single application platform. 3) Many to many: hybrid model where multiple seeds
are accessed by multiple client applications through a distributed federation layer.

Internal Ontology
To achieve the desired COEUS’ scalability and flexibility, the basic platform model is

organized in a tree-based structure. Data relationships are mapped to Entity-Concept-Item

structures, which are connected to Resources and Bridges, supporting integration and

exploration settings, respectively (Figure 0-7). This ontology is available online17 and must

be used in COEUS’ configuration files. Describing COEUS entire ontology is out of this thesis

scope. For further information regarding all classes, data and object properties or the

entire structure, refer to COEUS’ online documentation at

http://bioinformatics.ua.pt/coeus/documentation/. A short description for each core class

in the ontology follows.

 A Seed is a single framework instance. In COEUS’ model, Seed individuals are used

to store a variety of application settings, such as component information,

application descriptions, versioning or authors. Seed individuals are also connected

to included entities through the :includes property (inverse: :isIncludedIn). This

17

 http://bioinformatics.ua.pt/coeus/ontology/coeus_1.0b.owl

FEDERATION ENGINE

1
ONE TO MANY

2
MANY TO ONE

KNOWLEDGE

KNOWLEDGE

3
MANY TO MANY

FEDERATION ENGINE

KNOWLEDGE

permits access to all data available in the seed, providing an overarching entry

point to the system information.

 Entity individuals match the general data terms. These are “umbrella” elements,

grouping concepts with a common set of properties. For example, to gather

proteomics information, the model has a “Protein” entity or for disease information

there is also a general “Disease” entity. To better understand this organization,

object-oriented structures, their inheritance and variable subtypes must be

remembered.

 Concept individuals are area-specific terms, aggregating any number of items

(the :isConceptOf property) and belonging to a unique entity (the :hasEntity

property). Continuing the previous scenario, “UniProt”, “PDB” and “InterPro”

databases are concepts within the “Protein” entity. Note that an Entity may have

any number of concepts, but a Concept belongs to a single Entity.

 Item individuals are the basic terms, with no further granularity and representing

unique identifiers from integrated datasets. In the above proteomics scenario,

“P51587”, “P02461” are items under the “UniProt” concept, each matching a unique

term from the original UniProt database. For the disease entity, the “104300”

individual is a match for Alzheimer’s disease entry in the OMIM database concept.

In the knowledge base, items can be associated to other items directly

(predicate :isAssociatedTo) or through connections from their parent concepts.

Entities are also connected to concepts, and these to items, making Seed individuals

a central registry for COEUS’ seeds.

 Resource individuals are used to store external resource integration properties.

The configuration is further specialized with CSV, XML, SQL and SPARQL classes,

mapping precise dataset results to the application model, through direct concept

relationships. In the proteomics scenario, a Resource individual contains

information for the “UniProt” concept original data source, including its location

and how to extract each item. This resource is connected to several XML individuals

(predicate :loadsFrom), each containing an XPath query whose results will map to

application model properties. With the :hasResource property, the framework

knows exactly what resources are connected to each concept and, subsequently,

how to load data for each independent concept, generating new items.

 Brigde individuals are also mapped to concepts, storing concept visualization and

exploration features. That is, bridges tell the system how concept items can be

shown to users. This configuration permits any number of internal properties as

long as they are understood by the final client application. This means that we can

include parameters for advanced data visualizations, triggering web service calls or

composing simple links. An example of the latter is a bridge for the “UniProt”

concept, declaring a structure for building valid UniProt links, replacing #replace# in

http://www.uniprot.org/uniprot/#replace# with individual item identifiers.

Figure 0-7. COEUS’ ontology model for the internal tree-based structure highlighting relationships
amongst the various individual classes. A seed can have multiple entities, and each entity can be
related to one or more concepts. Concepts aggregate unique items and are connected to resource and
bridge information. The data import process uses resources’ properties (1) and custom methods can
be defined to display data (2). Sample seed data for a “Diseasecard” seed is shown at each element,
listing “UniProt” items belonging to a “Protein” entity.

One of the great advantages of using semantic web technologies is that any external

ontology can be used to complement or extend COEUS’ internal model. As long as new

properties are understood by the seed applications, any number of properties can be added,

mapping concepts or entities to existing ontologies or adding further properties to

describe resources or bridges.

SPARQL
SQL

CSV
XML

1
DATA IN

RESOURCE
res_uniprot

BRIDGE
link_uniprot

Item
P51587

Item
P01116

Item
P16083

Item
P12830

SEED
Diseasecard

ENTITY
Protein

CONCEPT
UniProt

*

1

*

1

...

1 *1*

*

1

2
DATA OUT

Data Flow
The COEUS framework gives developers total control over the data flow, from distributed

repositories to the internal semantic knowledge base and from this to any end-user

application. From a data input perspective, the goal behind this strategy is to provide

developers with advanced methods to load precisely what they want, how they want it and

from where they want it. Furthermore, on a data output perspective, we also want to

provide enough flexibility for developers to build their own applications in any

programming environment. To summarize, the inwards data flow establishes COEUS as a

data integration platform (Figure 0-8) and the outwards data flow demonstrates its

advanced interoperability features (Figure 0-9).

Figure 0-8. COEUS’ inward data flow, from external distributed and heterogeneous resources (1) into a
centralized knowledge base (2).

Figure 0-9. COEUS’ outward data flow. Knowledge collected in the centralized knowledge base (1) is
accessible through an interoperability API composed of four key interfaces: REST, Java, LinkedData
and SPARQL (2). 3) The API enables the creation of miscellaneous client applications, target at
multiple environments.

KNOWLEDGE BASE

CSV XML SQL SPARQL

1
DISTRIBUTED
RESOURCES

2
CENTRALIZED
KNOWLEDGE

KNOWLEDGE BASE

REST JAVA LDATA

1
CENTRALIZED
KNOWLEDGE

2
INTEROPERABILITY
API

3
HETEROGENEOUS
CLIENT APPLICATIONS

SPARQL

Extract-Transform-Load
Data integration is a perennial challenge in modern bioinformatics. As discussed in

previous chapters, caveats such as resource distribution and heterogeneity transform

integration into a demanding computer science challenge. One of COEUS’ goals is to tackle

this challenge. This framework provides features to facilitate the integration of

heterogeneous data from distributed resources in an elegant fashion. Traditional

warehousing techniques revolve around advanced algorithms for extracting data from a

specific source, transforming it into the warehouse model and actually replicating the data

in the new integrated dataset. In COEUS, this Extract-Transform-Load process is

specialized to a semantic web environment, enhancing the inwards data flow from CSV,

XML, SQL or SPARQL data to sets of triple statements.

Heterogeneity also appears in the distinct data models of each integrated resource.

COEUS tackles this issue with a semantic web translation process. Due to COEUS roots, the

internal knowledge base is model-agnostic, liberating integrated data from the restrictions

of CSV tables or relational databases. Since all data are stored as triple sets, the limitations

adjacent to foreign keys or table columns are replaced by meaningful relationships.

In most cases, the various properties stored in object-oriented models or XML

structures can be re-engineered through the adoption of existing ontologies or the creation

of new ones. As mentioned before, the usage of controlled ontologies augments the

flexibility of internal data models, enabling the creation of tightly integrated datasets.

The physical and logical content heterogeneity issues impose the development of a

generic data-loading tool. For simplicity purposes, a seed’s configuration file includes the

type of resource being loaded and the URI to access it. This way, all COEUS needs is an

Internet connection to access REST or SOAP services, SQL databases or SPARQL endpoints.

Furthermore, the URI naming scheme also permits the identification of local resources and

SQL database connections can be made to a local host. This results in having the same

structure in COEUS for importing local or remote data.

This immense amount of variables and configuration properties for integrating data

lead to the appearance of the connector and selector concepts, explained further in this

chapter.

Collecting Distributed Data
The initial problem that arises when building new warehouses or integrated datasets

relates to the diversity of formats involved in the data import process. Whether we are

accessing a REST web service or a MySQL database, most programming technologies allow

configuring this access through a simple URI. For instance, a sample JDBC connection string

to a MySQL database is

jdbc:mysql://thedbhost.com:3306/thedbname?user=thedbuser&password=thedbuserpwd	 	
and a sample URL for accessing Twitter’s API is

https://twitter.com/#!/search/%40term.	
The similarities are clear and enable the simplification of the external resources

configuration. All resources will have a URI property for instance.

If data format heterogeneity poses the initial threat for a linear data integration process,

the data model heterogeneity further heightens it. We know from the start that data will

come through in all sorts of formats and models. To overcome these caveats, COEUS adds

an intermediate abstraction layer between the external resources and the internal

knowledge base - Figure 0-10.

The idea behind this abstraction layer is to convert the data being integrated to a

general model-independent format. In practice, the implemented method simply generates

a network graph for each new item, mapping the configured predicates to the values from

external resources. With this data abstraction, the triplification process can take place,

enabling the generation of triple statements from the abstracted data model for further

storage in COEUS’ knowledge base.

Figure 0-10. COEUS’ data abstraction process. 1) Data from external, distributed and heterogeneous
resources is prepared for triplification. 2) COEUS connectors initiate the semantic translation using
the abstraction engine. 3) Generate triples are stored in the seed knowledge base, a fully integrated
triplestore.

ABSTRACTION ENGINE

1
HETEROGENEOUS
RESOURCES

john@mail.com

bob@mail.com

alice@mail.com

Bob

John

Alice

3

2

1

@toddmoy

@hellokv

@Twitter

@elliottmunoz

Kevin

Todd

Elliott

FirstName

3

2

1

#

@toddmoy

@hellokv

@Twitter

@elliottmunoz

Kevin

Todd

Elliott

FirstName

3

2

1

#
p : Person

s : Alice s : Bob

p : Date

CSV XML SQL SPARQL

2
SEMANTIC
TRANSLATION

bob@mail.com

...

OBJECT

Alice

foaf:contact

...

PREDICATE

rdfs:label

...

Bob

Alice

SUBJECT

3
INTEGRATED
TRIPLESTORE

Connectors and Selectors
The integration task consists in the acquisition of data from heterogeneous and distributed

resources to populate a seed. This complex strategy required the construction of purpose-

specific wrappers. These methods access external resources and process data, using the

connectors, based on a set of configuration properties, the selectors.

Selectors are property sets defining the data location in a specific resource and what

predicate will be added to the knowledge base during the integration process. Connectors

control these particular data mappings: independent and generic modules to load

information from external resources in CSV, XML, SQL or SPARQL formats. They possess a

common set of configuration properties defining the data type, where the data are located,

the relationships to existing data, and other module-specific definitions. This information

is stored in the seed configuration files, exemplified in the following chapter. For instance,

XML module configuration must include the original data source address and a collection

of selector properties, XPath queries, which will be performed against the read XML,

corresponding to the data being mapped. Likewise, SQL query column names, CSV column

numbers, or SPARQL variables are used as selectors in their respective modules.

The data loading process uses connectors to initiate a data triplification process. Data

are enriched through the dynamic generation of new triples based on specified

configuration properties. With this Semantic Web-based Extract-Transform-Load we are

augmenting the scope of data in one-dimensional CSV files or bi-dimensional SQL tables to

a multi-dimensional triplestore.

The richness of this triplification process resides on connector’s flexibility. The

selectors within a given connector allows us to match any content into our semantic graph

using a primary key for the subject, any property mapped from the seed ontology as

predicate, and selection results as objects. These are then used to generate each new item

map on-the-fly, which is then converted into a set of statements and inserted into the

knowledge base.

Triplifying Content
The triplification process highlighted in Figure 0-11 may proceed in two modes: explicit

and implicit. Explicit translations are required when data are read from CSV, XML or SQL

resources. As data does not possess any related semantics (only columns or objects),

explicit descriptions for the new predicates need to be set up. Since we can map data in

XML, CSV or SQL to any predicate in any ontology and to more than one predicate at once,

we can expand the meaning of non-semantic data by explicitly declaring it as the object of

a specific statement.

SPARQL resources provide implicit semantics; data are already in the same semantic

format (triple statements) as required by the storage engine. While loading data with the

SPARQL connector, the selector can match data into new predicates or the original

predicate. This way, COEUS can simply replicate triples or expand them to richer entities.

Figure 0-11. Triplification process overview. 1) Subjects, new Item individuals, are generated at
runtime. 2) Predicates are read from the configuration file to match any predicate from any ontology.
3) Objects read from the external heterogeneous resources finish the triple statement.

In addition to these two triplification modes, data integration can also be performed

using three distinct approaches according to the seed needs or to how data are provided by

each service. These methods are defined by the :method property in a resource

configuration. Cache is the default method and enables standard data loadings from

external resources, generating new items and triplifying all data. The complete method adds

new triples to items already in the seed triplestore. At last, the map integration method

enables the creation of custom direct relationships amongst individuals. With this, we can

create entire sets of new mappings amongst items after the data are loaded. Both the map

and complete integration methods use the :extends configuration predicate from COEUS’

internal ontology to define the Concept whose individual item list will be enriched.

With COEUS’ triplification strategy, the data integration approach is abstracted from

the data itself. Since there is ground for one or more common underlying ontologies, new

axioms can be established disregarding traditional software constraints. Data can be

collected and connected using distinct methods and miscellaneous import formats. This is

1
SUBJECT

2
PREDICATE

3
OBJECT

new ITEM individual

CSV columnfoaf:name

dc:title

rdfs:label

...

owl:versionInfo

SQL table column

XML XPath

SPARQL variable

custom Plugin

ideal for optimizing all kinds of new data-powered applications, namely on the life sciences

field, where heterogeneous data models with limited relationships are common.

Configuring a New Seed
The seed configuration controls the entire instance operability. At the moment, three

separate files are used to set up application properties, the application model and resource

integration properties.

 The config.js file stores volatile application properties. These include the application

name, version, short description, deployment environment and the list of

ontologies used in the seed. Using a JSON object for the configuration permits faster

reads when compared to XML, while maintaining a good object-oriented structure,

in comparison to simple properties files.

 The information system ontology. In most scenarios, the “reuse instead of rewrite”

principle does not suffice for the entire application ecosystem. As such, COEUS

allows the creation of custom ontologies to use in one or various seeds. Developers

are able to organize their own applications models, taking full advantage of

RDF/OWL’s modelling flexibility.

 The application setup file includes the data integration and exploration

configurations. In this file we define the individuals for each class, configuring

entities, concepts, bridges and resources. Summarily, content in this file is used to

guide the entire framework instance setup, from the handling of external resources

in the connectors to the labelling rules for each Item individual.

COEUS’ future developments include the addition of a user-friendly GUI to configure

new seeds. In the meanwhile, and considering the setup files OWL/RDF nature, relying on

Protégé is advisable to ease the configuration process. In this widely used ontology-

modelling tool, the configuration can be written, tested and visually organized.

The amount and variety of configuration options is even greater than WAVe’s. Hence,

the best option is to look at the examples and online documentation at

http://bioinformatics.ua.pt/coeus/documentation/. For mere descriptive purposes, a

subsection from a real configuration file is included next. This code sample configures the

loading of known human genes into a seed. This list, mentioned in WAVe’s integration

description, is maintained by the HUGO Gene Nomenclature Committee, which provides a

REST service for getting the list in CSV format. This resource loads the list into our seed,

populating a HGNC Concept under the Gene Entity. The resource_HGNC individual is

configured to load the data from the selected :endpoint object, send it for processing using

the CSV connector, property dc:publisher, and map the results from two :CSV individuals,

property :loadsFrom. In these, the :query predicate defines which column object will map

to the predicates listed in :property. Hence, in the csv_HGNC_id individual, data obtained

from column 0 of the HGNC CSV file, property :query, will be mapped into two triple

statements with the same subject, the dc:source and dc:identifier predicates and with the

same object, property :query.

#	 HGNC	 Resource	 configuration	
:resource_HGNC	 rdf:type	 :Resource	 ,	 owl:NamedIndividual	 ;	

rdfs:label	 "resource_hgnc"^^xsd:string	 ;	 	
dc:title	 "HGNC"^^xsd:string	 ;	
:method	 "cache"^^xsd:string	 ;	 	
dc:publisher	 "csv"^^xsd:string	 ;	 	
:endpoint	 "http://www.genenames.org/cgi-‐	
bin/hgnc_downloads.cgi?title=HGNC+output+data	

&hgnc_dbtag=onlevel=pri&=on&order_by=gd_app_s	
ym_sort&limit=&format=text&.cgifields=&.cgifi	
elds=level&.cgifields=chr&.cgifields=status&.	
cgifields=hgnc_dbtag&&where=&status=Approved&	
status_opt=1&submit=submit&col=gd_hgnc_id&col	
=gd_app_sym&col=gd_app_name&col=gd_status&col	
=gd_prev_sym&col=gd_aliases&col=gd_pub_chrom_	
map&col=gd_pub_acc_ids&col=gd_pub_refseq_ids"	 ^^xsd:string	 ;	

:extends	 :concept_HGNC	 ;	
:isResourceOf	 :concept_HGNC	 ;	
:hasKey	 :csv_HGNC_id	 ;	
:loadsFrom	 :csv_HGNC_id,:csv_HGNC_symbol.	

	
#	 HGNC	 CSV	 connector	 configuration	 for	 HGNC	 identifier	
:csv_HGNC_id	 rdf:type	 :CSV	 ,	 owl:NamedIndividual	 ;	

rdfs:label	 "csv_hgnc_id"^^xsd:string	 ;	 	
:query	 "0"^^xsd:string	 ;	 	
dc:title	 "HGNC_id"^^xsd:string	 ;	 	
:property	 "dc:source|dc:identifier"^^xsd:string	 ;	 	
:loadsFor	 :resource_HGNC	 ;	
:isKeyOf	 :resource_HGNC.	

	
#	 HGNC	 CSV	 connector	 configuration	 for	 HGNC	 name	
:csv_HGNC_name	 rdf:type	 :CSV	 ,	 owl:NamedIndividual	 ;	

rdfs:label	 "csv_hgnc_name"^^xsd:string	 ;	 	
:query	 "2"^^xsd:string	 ;	
dc:title	 "HGNC_name"^^xsd:string	 ;	 	
:property	 "rdfs:comment|dc:description"^^xsd:string	 ;	 	
:loadsFor	 :resource_HGNC.	

	
For improved dependency management, seed configurations are organized as graphs.

That is, developers can implement dependencies amongst resources, enabling the loading

of data based on previously collected individuals, selected with the :extends property. This

allows for the creation of advanced data integration workflows, combining multiple

concepts, thus enabling the aggregation of millions of triples in the seed’s knowledge base.

APIs
COEUS tackles the lack of interoperability in existing life sciences information systems.

Drawbacks such as poor web service availability, complex and closed data models, or

vendor-specific formats are common in bioinformatics. To overcome these clear issues in

semantic interoperability, COEUS includes, by default, a comprehensive API to explore

collected data.

Available methods were developed with two goals in mind. On the one hand, data must

be easily available for the creation of new applications within a COEUS seed. On the other

hand, integrated data must also be published externally, making it available for any

external system. Hence, COEUS’ API is organized in two sections: internal and external,

despite their natural promiscuity.

The internal API comprises the Java methods and Javascript libraries. The former

provides an abstraction over Jena’s basic data access functions and are adequate for

scenarios where the seed client-side application is also being developed in Java. These

methods permit data access in both ways, allowing for streamlined data access and

traditional data insertions. The available Javascript library simplifies the process of

accessing a SPARQL endpoint using Javascript. Combining this tool with modern user

interface frameworks (such as jQuery) makes it very easy to query a seed’s knowledge base

and use the response data in the application. Consequently, developers can create highly

interactive user interfaces, in any development framework. Moreover, custom endpoints

can be configured in the JavaScript library to access data from external SPARQL endpoints.

This enables the creation of modern semantic data mashups on the client-side.

The external API comprises a set of REST services, a SPARQL endpoint and a LinkedData

viewer. The available REST services allow accessing content in multiple formats (CSV, JSON,

RDF/XML or HTML). Likewise, the SPARQL endpoint is open for querying. With this

endpoint, any query can be performed to exploit the wealth of integrated data. At last, the

LinkedData perspective makes the knowledge base content available to any LinkedData

browser, delivering an advanced structured interface to access data.

Java and Jena
While Jena provides a developer-friendly API for adding and retrieving data in Java, COEUS

includes an additional set of methods to ease these tasks and facilitate data access.

COEUS Java API is an abstraction over Jena’s internal methods, providing a more direct

way to access COEUS data structures. Hence, accessing items, concepts or entities, or

adding new statements actions are more straightforward. Next, there are the signatures for

functions to add new statements and retrieving the result set of a SPARQL query. More

examples and full documentation can be found online in the Java documentation at

http://bioinformatics.ua.pt/coeus/javadoc/.

REST
COEUS’ RESTful services API provides a set of methods to access data in the knowledge base

through simple GET requests. REST services are currently the most widely used strategy for

systems interoperability. Modern service-oriented architectures rely on these types of

services due to their flexibility in regard of formats and operation types. The trade-off

between having a more standardized (though constrained) services platform using SOAP

and a more “open” alternative with REST was acceptable for COEUS, promptly pushing the

latter as the only viable solution for supported services in COEUS.

Furthermore, in spite of the relatively low number of REST services available by default,

more services can be easily added through the combination of internal Java methods with

Stripes’ powerful URL binding mechanisms. The Stripes framework has a very light

learning curve, enabling the addition of new actions and services an easy job even for non-

experienced Java web developers.

The highlight from the REST service set is the triple request method. This service

enables building custom statements with specific subject, predicate or object properties,

which are mapped into a SPARQL query to an instance’s knowledge base (Figure 0-12). For

example, http://bioinformatics.ua.pt/coeus/api/triple/coeus:hgnc_COL3A1/pred/obj/js

returns a JSON object with all statements where the item coeus:hgnc_COL3A1 (human

gene COL3A1) is the subject from COEUS sample dataset. Similarly,

http://bioinformatics.ua.pt/coeus/api/triple/sub/coeus:hasEntity/obj/xml returns XML

detailing all subjects and objects related with a coeus:hasEntity predicate. In COEUS’

ontology, this lists all concepts and respective entities.

Figure 0-12. COEUS REST API summary. 1) Various wildcards can be combined to form valid requests
and access all data in the knowledge base. 2) Sample REST requests highlighting the different output
formats and wildcard use.

At last, the major advantage of using the available REST services is the access of data in

multiple formats. Whereas requesting data in JSON format is optimal for lightweight web

application development, one might need to import data in CSV format into an Excel sheet

or transform XML content into a new database. This variety further increases COEUS’

overall flexibility, improving its usage in modern application platform environments.

SPARQL
Another COEUS’ API feature is the default SPARQL endpoint. With an open SPARQL

endpoint, users or developers have full access to a seed’s knowledge base, enabling

complex queries and more insightful data retrieval operations.

Much like the set of REST services, the SPARQL endpoint also enables getting data in

multiple formats, promoting its easier integration with client-side applications (discussed

in the Advanced User Interactions section next). A form for querying each seed triplestore

is available by default in all seeds at../sparqler. This form allows developers to test their

SPARQL queries before including them in the application code.

LinkedData
Nowadays, the hottest topic in data sharing and interoperability is LinkedData. Through its

multiple subdivisions, the LinkedData guidelines empower a completely interoperable

knowledge ecosystem, where resources are directly accessible through their URIs and their

semantic descriptions establish meaningful connections to other miscellaneous data types.

COEUS uses the pubby package to publish the knowledge base as LinkedData. A simple

configuration file defines the connection properties to access the seed SPARQL endpoint

and retrieve data. For each resource being browsed, the application issues a DESCRIBE to

obtain all object relationships.

<!-‐-‐	 DESCRIBE	 <http://bioinformatics.ua.pt/coeus/resource/uniprot_P51587>	 -‐-‐>	
<?xml	 version="1.0"?>	

.../api/triple/<subject>/<predicate>/<object>/<format>

1
URL
WILDCARDS

SAMPLE
REQUESTS
2

p

pred

predicatesubject

sub

s

object

obj

o

obj

coeus:Protein

obj

coeus:isAssociated

coeus:hasEntity

rdfs:label

coeus:hgnc_BRCA1

sub

coeus:Disease

json

xml

csv

<rdf:RDF	
	 	 	 	 xmlns:rdf="http://www.w3.org/1999/02/22-‐rdf-‐syntax-‐ns#"	
	 	 	 	 xmlns:owl="http://www.w3.org/2002/07/owl#"	
	 	 	 	 xmlns:dc="http://purl.org/dc/elements/1.1/"	
	 	 	 	 xmlns:owl2xml="http://www.w3.org/2006/12/owl2-‐xml#"	
	 	 	 	 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"	
	 	 	 	 xmlns="http://bioinformatics.ua.pt/coeus/"	
	 	 	 	 xmlns:rdfs="http://www.w3.org/2000/01/rdf-‐schema#">	
	 	 	 	 <isAssociatedTo	

rdf:resource="http://bioinformatics.ua.pt/coeus/prosite_PS50138"/>	
	 	 	 	 <isAssociatedTo	

rdf:resource="http://bioinformatics.ua.pt/coeus/mesh_D010051"/>	
	 	 	 	 <isAssociatedTo	

rdf:resource="http://bioinformatics.ua.pt/coeus/interpro_IPR015525"/>	
	 	 	 	 <isAssociatedTo	

rdf:resource="http://bioinformatics.ua.pt/coeus/pdb_3EU7"/>	
	 	 	 	 <dc:identifier>P51587</dc:identifier>	
	 	 	 	 <dc:source>P51587</dc:source>	
	 	 	 	 <isAssociatedTo	

rdf:resource="http://bioinformatics.ua.pt/coeus/pdb_1N0W"/>	
	 	 	 	 <hasConcept	

rdf:resource="http://bioinformatics.ua.pt/coeus/concept_UniProt"/>	
	 	 	 	 <rdfs:label>item_P51587</rdfs:label>	
	 	 	 	 <isAssociatedTo	

rdf:resource="http://bioinformatics.ua.pt/coeus/hgnc_BRCA2"/>	
	 	 	 	 <isAssociatedTo	

rdf:resource="http://bioinformatics.ua.pt/coeus/mesh_D001943"/>	
	 	 	 	 <dc:title>P51587</dc:title>	
	 	 	 	 <isAssociatedTo	

rdf:resource="http://bioinformatics.ua.pt/coeus/mesh_D010190"/>	
	 	 	 	 <isAssociatedTo	

rdf:resource="http://bioinformatics.ua.pt/coeus/mesh_D005910"/>	
	 	 </rdf:Description>	
</rdf:RDF>	
	
When these data are delivered through the web interface, users can explore LinkedData

innate connections, which allow users to jump from object to object within the same seed,

in an external seed or accessible through a normalized URI.

With the LinkedData interface, COEUS completes the interoperability features required

to enhance modern service composition ecosystems. This ability to make the integrated

and enriched data available in the Linked Open Cloud without complex configuration tasks

or tricky deployment processes is a defining feature for COEUS, taking it further in

semantic web for life sciences innovation.

Advanced User Interactions
Modern application development relies on advanced browser-based capabilities to deliver

more compelling user interactions. The latest versions of all major browsers include

powerful JavaScript processing engines, like Google’s V818 or Mozilla’s JagerMonkey19, with

18

 http://code.google.com/p/v8/

outstanding performances on the client-side. This triggered an evolution on web-based

application, making them able to deal with larger amounts of data and increasing their

processing capabilities.

In addition, JavaScript development frameworks such as jQuery 20 , MooTools 21 or

SproutCore22, include methods to further rival server-side data handling and computational

capabilities. This allows for the development of increasingly interactive web applications,

reducing the thin line that separates them from desktop-based applications.

It is important for COEUS to also take part in this emerging and fast-growing

application trend. Therefore, COEUS includes a JavaScript library (available under

assets/js/sparqler.js) that enables direct connections to each seed’s SPARQL endpoint. With

this, it is possible to ask queries to and process data directly from the knowledge base with

a powerful querying language. Data are retrieved as a JSON object easily handled in

JavaScript. This library further increases rapid application prototyping and interface

development in COEUS.

Case Studies
Exploring Collected Data
A trivial case study can be setup to test the various elements composing COEUS APIs. For

this matter, knowledge regarding the breast cancer type 2 susceptibility protein

(UniProt accession number P51587) will be collected from COEUS sample dataset.

These results are obtained from the graph of relationships where a representation of

this individual, mapped in COEUS’ sample knowledge base as coeus:uniprot_P51587, is an

active subject. The methods for accessing these data are detailed next.

 Java. To obtain these data in Java, the getTriple() API method must be invoked,

defining what filter to use and the desired XML output format.

/*	 Invoke	 getTriple(“coeus:uniprot_P51587”,	 ”p”,	 ”o”,	 “xml”);	 */	
pt.ua.bioinformatics.API.getTriple(…);	

 REST. The desired protein data can be obtained, in CSV format for example,

through a direct GET request to the public REST interface at

http://bioinformatics.ua.pt/coeus/api/triple/coeus:uniprot_P51587/p/o/csv.

19

 https://wiki.mozilla.org/JaegerMonkey
20

 http://jquery.com/
21

 http://mootools.net/
22

 http://sproutcore.com/

 SPARQL. UniProt P51587 data can be queried from COEUS’ SPARQL endpoint,

available at http://bioinformatics.ua.pt/coeus/sparql, with the following query.

#	 SPARQL	 query	 to	 issue	
PREFIX	 coeus:	 <http://bioinformatics.ua.pt/coeus/>	
SELECT	 ?p	 ?o	 {coeus:uniprot_P51587	 ?p	 ?o}	
Any query can be tested at http://bioinformatics.ua.pt/coeus/sparqler/.

 LinkedData. The requested protein data can be explored through a LinkedData

browser pointed to http://bioinformatics.ua.pt/coeus/resource/uniprot_P51587.

Additionally, the same address provides a summary view for regular web browsers.

Promoting a Federated Knowledge Ecosystem
The execution of federated SPARQL queries enables access to data across multiple sources

in a single transaction. Whether data are locally stored or in a remote location, the query

engine uses the SERVICE property to acknowledge where a specific question should be

asked.

Every COEUS seed includes a SPARQL endpoint by default. With multiple seeds in place,

it is fairly easy to perform queries across the various COEUS instances, inferring results on

the fly. This virtual distributed knowledge network, the aforementioned knowledge garden,

opens up immense data integration and interoperability possibilities. In modern national

health information systems scenarios, launching multiple seeds with similar data models

and targeted at regional subsets, originates a federated knowledge ecosystem. Applications

can access each seed individually, cross data between two or more seeds, or have an holistic

perspective over the entire knowledge garden.

A case study for COEUS’ federation support regards the answers for following scientific

question: What are the PDB identifiers for the protein structures and the MeSH term identifiers

associated with the human BRCA2 gene?

To answer the proposed question, the federated query shown next links four distinct

services, i.e. SPARQL endpoints. COEUS’ default SPARQL is replicated three time to virtually

simulate the query distribution. The query is processed in real time through the SPARQL

endpoint, with the following steps:

1. The Diseasome SPARQL endpoint is queried to obtain the label for the human

BRCA2 gene (?label).

2. The ?label variable is passed to the first COEUS seed, acting as the selection

clause for the gene and enabling access to a set of UniProt proteins associated

with it (?uniprot).

3. The ?uniprot variable is shared with the third and fourth SPARQL endpoints,

where data regarding PDB identifiers (?pdb) and MeSH term identifiers (?mesh)

is selected. This last request could be executed in a single query, but is divided to

further demonstrate COEUS’ federation capabilities.

#	 Federated	 SPARQL	 query	
PREFIX	 dc:	 <http://purl.org/dc/elements/1.1/>	
PREFIX	 diseasome:	 <http://www4.wiwiss.fu-‐

berlin.de/diseasome/resource/diseasome/>	
PREFIX	 rdfs:	 <http://www.w3.org/2000/01/rdf-‐schema#>	
PREFIX	 coeus:	 <http://bioinformatics.ua.pt/coeus/>	
	
SELECT	 ?pdb	 ?mesh	
WHERE{	
	 	 	 	 {	
	 	 	 	 	 	 	 	 SERVICE	 <http://www4.wiwiss.fu-‐berlin.de/diseasome/sparql>	 	
	 	 	 	 	 	 	 	 {	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 <http://www4.wiwiss.fu-‐

berlin.de/diseasome/resource/genes/BRCA2>	 rdfs:label	 ?label	
	 	 	 	 	 	 	 	 }	
	 	 	 	 }	
	 	 	 	 {	
	 	 	 	 	 	 	 	 SERVICE	 <http://bioinformatics.ua.pt/coeus/sparql>	 	
	 	 	 	 	 	 	 	 {	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 _:gene	 dc:title	 ?label.	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 _:gene	 coeus:isAssociatedTo	 ?uniprot	
	 	 	 	 	 	 	 	 }	
	 	 	 	 }	
	 	 	 	 {	 	
	 	 	 	 	 	 	 	 SERVICE	 <http://bioinformatics.ua.pt/coeus/sparql>	
	 	 	 	 	 	 	 	 {	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ?uniprot	 coeus:isAssociatedTo	 ?pdb.	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ?pdb	 coeus:hasConcept	 coeus:concept_PDB	
	 	 	 	 	 	 	 	 }	
	 	 	 	 }	
	 	 	 	 {	 	
	 	 	 	 	 	 	 	 SERVICE	 <http://bioinformatics.ua.pt/coeus/sparql>	
	 	 	 	 	 	 	 	 {	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ?uniprot	 coeus:isAssociatedTo	 ?mesh.	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 ?mesh	 coeus:hasConcept	 coeus:concept_MeSH	
	 	 	 	 	 	 	 	 }	
	 	 	 	 }	
}	
This, and any other federated queries, can be tested online at

http://bioinformatics.ua.pt/coeus/sparqler/. Additionally, more complex queries can be

built combining these data with any other SPARQL endpoint.

Despite being targeted at life sciences developers, COEUS can be used in various other

real world settings. In either the corporate domain or TV networks, data are generated in

large quantities and with complex innate relationships. While we do not envisage COEUS

replacing already setup infrastructures in these areas, the framework is suitable for quickly

deploying ad-hoc knowledge bases.

For example, a news channel web application can be built to aggregate information on a

selected topic, from various media sources, in a single environment. With COEUS, content

from Twitter, Facebook or any modern news site (using RSS/Atom feeds) can be quickly

pulled into a new repository, enabling the creation of semantically richer applications for

both web and mobile environments. Furthermore, the resulting dataset can be also used to

improve existing applications. A new semantic layer can be incorporated in the client-side

of modern web applications by querying and loading data in JSON format

Pharmaceutical companies can also use COEUS. A virtual scenario uses the COEUS

platform with a well-designed ontology to create a Semantic Web-powered infrastructure

to manage specific in-house datasets. Managing marketing results or large clinical trials

data can be improved by establishing COEUS seeds, each with its own goals and needs, and

allowing for future connections amongst these initially disparate data through COEUS'

knowledge federation features.

Features and Usability
Rapid Application Development
COEUS’ “Semantic Web in a box” approach streamlines the creation of new Semantic Web

applications. The development of new semantic systems is highly associated with a steep

learning curve and a myriad of technologies and tools to chose from. Although this variety

is beneficial, it is also a characteristic of a still immature deployment environment. Unlike

traditional relational database applications where the “technology path” is clearly outlined,

with semantic web applications the adequate set of technologies and strategies continues

to be chosen in ad hoc fashion.

COEUS provides the means for semantic web rapid application deployment by offering a

single package comprising the set of tools required to develop a new application from

scratch. Moreover, the application backend, the knowledge base, can be populated through

advanced data integration wrappers that use flexible configuration ontology.

Incorporating the interoperability API with the integration features results in a

framework that highly reduces the application “time-to-market”. It is easy to get the data

in the system. Likewise, it is easy to get the data out the system. This facilitates the creation

of independent application platforms, supported by a comprehensive backend knowledge

base that enables deploying to desktop, web or mobile systems. The API also permits coding

client-side applications in any programming environment and using any framework,

further improving COEUS flexibility and robustness.

Data Integration Platform
Data integration is the initial cornerstone for the COEUS framework. Its powerful resource

integration capabilities enable the creation of customized niche-based data warehouses,

powered by a semantic knowledge base. Distributed and heterogeneous data can be

replicated or linked, taking advantage of semantic web’s advanced data modelling

capabilities to overcome schema mappings and internal wrappers for general data retrieval.

Data in CSV, SQL, XML or SPARQL formats are easily configured for integration,

smoothing the transition from traditional data storage approaches to a modern semantic

web reality. This migration is further improved through the advanced extract-transform-

load warehousing features, providing a simple strategy for generating triple sets from any

kind of data type. Moreover, custom plugins can be developed to match scenarios that do

not fit COEUS’ capabilities yet.

COEUS aids in the publishing of semantic web-powered knowledge bases, moving one

step further to the envisaged view of the Internet as a semantically rich distributed

knowledge network.

LinkedData & Semantic Services
Once data are integrated into a seed’s knowledge base they are promptly available through

various APIs. Firstly, the internal Java API layer hides away all complexities regarding

semantic triple stores and data structures, offering a set of methods to retrieve data

directly as an iterable result set.

Next, the REST services API encompasses simple GET-based methods to access data. The

triple service offers a quick way to iteratively load all data into any application

development environment.

The SPARQL endpoint is the most powerful interoperability feature. Besides supporting

the LinkedData infrastructure and the client-side JavaScript library, it makes all data

available through a standardized and efficient query engine. Complex queries can be asked

and processed in command-line tools, web clients or desktop applications, further

increasing the wide scope of COEUS’ use. The SPARQL endpoint is also the underlying entry

point for knowledge reasoning and inference features.

The LinkedData interface empowers the availability of integrated data in the most

advanced data interoperability scenarios. With URLs uniquely and precisely identifying

data descriptions numerous possibilities for service composition arise, taking the most out

of connected, i.e. linked, data.

At last, the included JavaScript library enables creating best-of-breed user interactions,

handling all data access and processing on the client-side. From the web application

development perspective, this is the most interesting feature, as it enables the

development of more responsive interactions in desktop- or mobile-based systems, taking

web applications to the next usability level.

Knowledge Federation Framework
The challenge of federating knowledge scattered through multiple independent databases

is also tackled in this framework. New seeds automatically launch SPARQL endpoints and

LinkedData views, endowing developers with multiple ways to access and federate data.

Whether we are dealing with SPARQL-based federation or virtual LinkedData networks,

data are inherently distributed and connected. With these technologies, anyone can launch

his own customized and focused application ecosystem. In a COEUS’ knowledge garden, the

holistic view over all data empowers the sharing of knowledge amongst a scalable of

numbers of peers, improving the federation of and facilitating access to data.

Future Developments
COEUS is an active project, published as open source with the purpose of captivating

interest in new developments, thus creating a community surrounding the framework.

Foreseen developments are focused on three main areas: improve the transition from

monolithic systems to a semantic web environment, simplify the configuration of new

seeds and provide new methods to input and output data from a seed.

Firstly, a migration assistant tool will be developed to smooth the transition from

relational databases, CSV or XML structures into the semantic web paradigm. Leveraging

on tools such as D2R we aim to create algorithms that read database structures and

generate COEUS configuration models dynamically. For instance, automated processes to

discover Entity-Concept organizations or internal data/object properties and import

content on the fly will ease the creation of new seeds. Consequently, it will be much easier

for bioinformaticians to transform their platforms and access all COEUS’ integration and

interoperability features.

The migration assistant will also feature simplified configuration interfaces. While

now developers need to configure new seeds in Protégé or text-editor, a GUI-based setup &

installation tool will be available in the future. This is aimed at non-expert bioinformatics

developers that would rather fill in forms and click buttons than edit configuration settings

by hand. Another step towards the simplification of seeds creation is the creation of a

COEUS virtual machine image pre-build with all required tools. In this case, the goal is to

use a solution like TurnKey23 to offer a disk image with the required application server,

database and COEUS seed ready for deployment in a real-world scenario. Furthermore, this

will also empower future COEUS integration with cloud-based developments.

Next, the API will also be augmented with new applications and tools. OS-specific

applications and command-line tools for accessing COEUS’ endpoints will be created. These

will be an even better fit for a bioinformaticians research workflow. For instance, old-

school biologists traditionally use basic shell scripts to perform data filtering and enriching

operations. These can be enhanced with access to a COEUS knowledge base allowing the

integration of state-of-the-art integrative datasets with legacy tools. Another opportunity

concerns COEUS service composition. REST services will be improved and new ones

developed to ease the process of combining COEUS services in Taverna workflows. With

Taverna as the de facto workflow platform, it is advisable to foster COEUS use in this service

composition environment.

Discussion
Ad-hoc Software Solutions VS Rapid Application Development
Developing tailored ad hoc solutions is the current practice in bioinformatics. Solutions like

the ones highlighted in chapters 4 and 5 (EU-ADR Web Platform and WAVe) play a

fundamental role in the evolution of the way bioinformatics software is developed. In spite

of the recent turn of events in the innovative technologies side, where previously built

packages are preferred over deployment from scratch, we must realize that

bioinformaticians are not "regular" developers. The traditional bioinformatician’s

background usually lacks computer science skills, such as database management, modelling

or object-oriented programming. Since most stakeholders fit this profile, it is easy to

understand the biased focus on building new systems from scratch, paying little to no

consideration to existing platforms, frameworks or programming libraries.

On the other end of the spectrum is the use of rapid application development strategies.

By considering RAD ideals in a very broad sense, we observe that its practices are already

being used in the majority of innovative technological platforms. Reusable assets are being

used more often whether in the form of fully-fledged application frameworks, user

interface bootstrapping packages or simple external libraries. Over time, the inclusion of

23

 http://www.turnkeylinux.org/

these components in new systems became easier, empowering the creation of new tools

and disseminating the adoption of RAD ideals. The created strategies that empower COEUS

build on this growing use of RAD principles, aiming at its use to create innovative

biomedical applications.

Enhancing Rapid Application Development
The overall concept of RAD strategies for bioinformatics is still in its infancy. Molgenis is

one successful case in the area, with a robust framework for launching new bioinformatics

applications very quickly. The room for improvements over general RAD and

bioinformatics-specific RAD is tied to two domains: integration & interoperability research

and the semantic web paradigm.

RAD frameworks are not prone to facilitating the integration of data from external

resources. Whereas the ability to quickly deploy data stores is omnipresent, RAD

frameworks lack the features required to easily populate those data stores. The multiple

challenges associated with the integration of data in any field, detailed along this thesis,

are cumbersome for bioinformatics developers. Hence, the inclusion of integration features

is deemed vital for bioinformatics RAD frameworks. Collecting and transforming data from

CSV, SQL or XML files into a centralized knowledge base is a must-have feature in a field

riddled with data heterogeneity and distribution. COEUS achieves this through a flexible

integration engine, allowing the mapping of existing content into any ontology, and

storing generated triples in a centralized knowledge base. Continuing DynamicFlow and

WAVe’s pursuit of the best service description strategy for data integration, COEUS uses an

adaptive ontology to organize and configure a set of integrated resources.

As previously mentioned, the semantic web paradigm adoption and acceptance by the

life sciences community is growing and it emerges as a viable alternative to lead biomedical

software to a new level with tighter integration and better interoperability. The

applicability of semantic web's ideals fits perfectly the complex life sciences challenges set.

However, the steep learning curve associated with semantic web technologies is drawing

users away from this new world. As such, the opportunity arises for the inclusion of

semantic web technologies and features within a rapid application development package.

For this matter, bioinformaticians must think about triplestores instead of relational

databases, about SPARQL endpoints instead of SQL hosts or about LinkedData instead of

SOAP-based data exchanges. The semantic web empowers a new services layer that allows

the creation of truly federated intelligent data networks. Combining LinkedData with

SPARQL endpoints we can connect and exploit the wealth of data from miscellaneous data

stores. As stated in the initial requirements, COEUS includes, by default, a SPARQL endpoint

and support for LinkedData views, enabling truly semantic access to data collected in a

single seed or federated from multiple COEUS instances.

A Framework for Semantic Bioinformatics Software
The next-generation of bioinformatics software will be empowered by the combination of

two grand innovations that are diluting the boundaries between computer and life sciences.

On the computer science standpoint, the adoption of agile strategies to develop new

applications is pushing forward the adoption of generic rapid application development

methods, from reusable programming packages to user interface prototype building. For

life sciences, enhanced biomedical semantics are the cornerstone for a better

understanding of our human condition. While it will not solve all problems in

bioinformatics, the semantic web emerges as the most viable alternative to build the next-

generation of biomedical knowledge.

The COEUS framework is our approach to tackle these challenges and produce a next-

generation semantic web rapid application development framework. The innovative

"Semantic Web in a Box" approach encloses four major pioneering roles.

 The adoption of rapid application development strategies in COEUS endows

developers with the tools to quickly build new application ecosystems targeting any

deployment environment.

 COEUS is a semantic data integration platform enabling the acquisition and

translation of heterogeneous data from distributed resources intro a centralized

knowledge base.

 COEUS provides Semantic Web and LinkedData services by default. This ensures

the interoperability of integrated data with any external system through open

standard methods. Moreover, with a semantic knowledge base in place, support for

reasoning and inference strategies is facilitated.

 COEUS enables the federation of gathered knowledge through comprehensive APIs.

The SPARQL endpoint and LinkedData interfaces empower querying and reasoning

over multiple COEUS instances.

The COEUS framework is an open-source project. Documentation and code samples are

available online at http://bioinformatics.ua.pt/coeus/.

A COEUS INSTANCE

Many bioinformatics platforms are emerging within the constantly evolving life

sciences field that satisfy most integration and interoperability requirements. The

main advantage of this evolution is that developers do not need to rebuild entire

knowledge systems and data infrastructures from scratch. It is possible to reuse and

recombine existing components to form entirely new software systems as an

answer to the latest challenges. Furthermore, with the COEUS framework in place,

we have the tools required to launch a new semantic web application with minimal

effort.

Continuing our research within the individualized healthcare field, we tackle the

study of rare diseases with the development of a new version for the Diseasecard

platform. The personal health implications behind rare diseases are seldom

considered in widespread medical care. The low incidence rate and complex

treatment process makes rare disease research an underrated field in the life

sciences. Diseasecard, an online portal containing thousands of pointers to rare

disease resources, was developed to aid rare disease investigators. However, the

uncontrollable evolution of data and services in the field, united with an aging

legacy code, triggers the need for a new release.

Not only was Diseasecard's server-side code dated, the user interface was also in

the need of a facelift to better suit the current generation of web applications.

Hence, Diseasecard appeared as the perfect benchmark for COEUS’ developments.

An initial prototype of the new Diseasecard, COEUS first public instance, is available

at http://bioinformatics.ua.pt/dc4/.

In this chapter we introduce the new Diseasecard platform and discuss the

details behind its development. Starting with a brief analysis of the legacy

Diseasecard portal, we cover the easy process of creating a new COEUS seed, from

the construction of a rare disease knowledge base to the details of Diseasecard's

new user interface.

Improving Rare Diseases Research
Rare diseases’ particular conditions hold the strongest relations between genotypes

and phenotypes. Understanding gene-disease associations is a fundamental goal for

bioinformatics research, especially at rare disease level, where the genotype-

phenotype connections are limited to a small set of genes. Rare diseases are

particular conditions that affect at most 1 in 2000 patients. The European

Organization for Rare Diseases (EURORDIS) estimates that there are approximately

6000 to 8000 rare diseases, affecting about 6% to 8% of the population. Within these,

about 80% are caused by genetic disorders. Due to the reduced incidence of each

individual disease, it is difficult for patients to find support, both at clinical and

psychological levels. Some of these chronic diseases hinder the patients’ quality of

life and cause serious damage or disability in social terms. The existence of a small

number of patients for each rare disease also delays the creation of adequate

research studies, as it is difficult to identify and coordinate a relevant cohort.

Despite the low statistic impact regarding these diseases, the combined amount of

patients suffering from one of these rare diseases is considerably high.

Diseasecard’s Legacy
Diseasecard was developed to improve rare disease research and education. It is a

web portal that uses link integration strategies to establish connections to a myriad

of external resources. The goal is to provide a central workspace where users can

explore available connections to assess rare diseases underlying genotype,

associated proteins or pathways, known drugs, ongoing clinical trials or relevant

literature (Figure 0-1).

Initial Diseasecard developments date back to 2004. At that stage, the data

acquisition strategy relied on web crawling to discover links for the various data

types integrated in the database, and static HTML pages contained most of the

Internet content. The idea of providing services to access data was not mature

enough yet and most data was still published in CSV files or similar text-based

tabular formats. Diseasecard’s platform uses a link integration engine, pre-

configured with a navigation map that teaches the system what links to collect and

what links to follow for further crawling. Whilst this strategy worked for the 2004

timeline, it is currently totally inadequate.

Figure 0-1. Diseasecard workspace for Alzheimer’s Disease, OMIM code 104300 (from legacy
Diseasecard24).

Collecting Rare Disease Information
Much like the human variome scenario, rare disease information is scattered

through multiple non-exchangeable data sources. In a sense, Diseasecard

development is a common “by the books” service composition problem. With

heterogeneous rare disease data fragmented through multiple independent

resources, new strategies must be devised to collect it and make it available for

other tools.

24

 http://bioinformatics.ua.pt/diseasecard/evaluateCard.do?diseaseid=104300

In a world with personalized medicine and individual healthcare as primary

research topics, advanced integration and interoperability tools are essential. The

huge amounts of data are meaningless unless they are interconnected with rich

relationships. Moreover, data integration in bioinformatics has been mostly focused

on genotype data. Nowadays, the goal is to balance the scale. We need to access the

increasing quantity of clinical phenotype data and combine it with existing rich

genotype resources, empowering a new knowledge reasoning level.

Despite dated, Diseasecard’s initial approach already preconceived this much-

needed integration from genotypes to phenotypes. However, with the appearance

of WAVe we already provide an alternative geared towards genotype data. Hence,

the new Diseasecard is much more directed towards phenotype information. This

demands establishing a new rare disease relationship network that in spite of being

based on the original Diseasecard, further specializes it with another filtering layer.

The New Diseasecard
Developing a new Diseasecard version was an entirely different task from

developing a new application from scratch. The complex requirements analysis or

data modelling tasks were already executed and documented for the original portal.

Likewise, mock-ups were not required for the interface design as the idea was to

improve on existing interactions and to make the lower number of changes as

possible, always without disrupting the tree-based and map-based navigation

metaphors.

Supported by previous requirements’ comprehension, we only needed to update

Diseasecard’s internal data model to fit the COEUS seed configuration. This requires

organizing data in the Entity-Concept-Item tree structure and defining the

integration properties. Whereas the original Diseasecard used a map-based

navigation model to crawl for identifiers, parsing HTML content from webpages

dynamically, the new COEUS-based integration engine uses web services and

databases to load data and generate a similar, yet richer, rare disease knowledge

network.

In addition, this rare disease knowledge network is available for reasoning and

inference. The new data relationships allow denser knowledge connections, further

enabling the success and availability of reasoning features, which may result in

deeper rare diseases insights. Through these new connections we can also infer new

knowledge. As such, by semantically integrating data from miscellaneous

heterogeneous resources, we are empowering the discovery of new direct links

from genotypes to phenotypes in rare diseases.

Regarding the web application, we tried to maintain the user interactions

already present in the legacy Diseasecard. Using the same metaphor, the new

Diseasecard delivers an improved user experience. The navigation tree is smoother

and more complete and leaf links trigger the Live View feature. The latter promotes

accreditation and ownership of original work, loading the external resource directly

within Diseasecard’s workspace, just like in WAVe.

At last, the legacy Diseasecard included a navigation map. In this map, users

could identify which data types were available for each specific disease. In the new

Diseasecard, this key static interaction component was replaced by a dynamic

identifier map. Besides being a more interactive tool, the new navigation map

enables accessing the external resources directly, without additional navigation

tree mouse clicks.

Application Setup
Data Model
Following COEUS “reuse instead of rewrite” motto, the new Diseasecard’s data

model reuses existing schemas internally. Using COEUS seed configuration and

taking advantage of existing ontologies and models for internal usage is enough to

organize collected data.

For each individual item, such as a UniProt protein or an OMIM disease, we only

need to store its identifier. Hence, we can reuse the identifier term from the Dublin

Core ontology. In Diseasecard, each Item individual has a dc:identifier data

property, matching a string with the external identifier. COEUS enables reusing any

kind of property, liberating our knowledge base from strict data models. Another

example is the rdfs:label property, obtained from the RDF schema ontology that is

used to label each individual object in Diseasecard, whether it is an Entity, an Item

or a Resource.

This “reuse instead of rewrite” fits most required properties. Nevertheless, to

further enhance user interactions new relationships were required. Diseases may

have multiple names and OMIM’s internal structure makes distinctions from

phenotype and genotype identifiers. To this end, new data and object predicates

were created, as listed in Table 0-1. With the set of integrated resources in place and

the new model designed, Diseasecard was ready to be launched as a new COEUS seed.

Table 0-1. List of new predicates in Diseasecard ontology.

PREDICATE RELATIONSHIP DESCRIPTION
Object Properties

hasGenotype Disease to Disease
Connects a Disease phenotype entry with

its associated genotypes.

hasPhenotype Disease to Disease
Connects a Disease genotype entry with its

associated phenotypes.

Data Properties

chromossomalLocation to Str ing
Chromossomal location information (read

from MorbidMap).

genotype to Boolean True if Disease is a genotype.

name to Str ing Disease name.

omim to Str ing Disease OMIM accession number.

phenotype to Boolean True if Disease is a phenotype.

A New COEUS Seed
As mentioned, Diseasecard is the first COEUS seed. To launch a new COEUS the

initial step is to download or clone COEUS’ source code into a new development

workspace. Java, an Apache Tomcat server and a MySQL database must be in place

to set up the new system. As mentioned in the previous chapter, the configuration

involves three files:

 The Diseasecard model is transposed to a new ontology25, including the new

data and object properties. This file can be created and managed using

Protégé.

 Config.js, the seed configuration file, contains the details for the new

Diseasecard application properties. These basic properties define where

25

 http://bioinformatics.ua.pt/dc4/diseasecard.owl

further configurations, such as the seed ontology, the setup files or MySQL

database connections are stored.

#	 Diseasecard	 application	 properties	 file	
{	
	 	 	 	 "config":	 {	
	 	 	 	 	 	 	 	 "name":	 "Diseasecard",	
	 	 	 	 	 	 	 	 "description":	 "Diseasecard	 v4",	
	 	 	 	 	 	 	 	 "keyprefix":"coeus",	
	 	 	 	 	 	 	 	 "version":	 "4.0",	
	 	 	 	 	 	 	 	 "ontology":	

“http://bioinformatics.ua.pt/dc4/diseasecard.owl",	
	 	 	 	 	 	 	 	 "setup":	 "dc4_setup.rdf",	
	 	 	 	 	 	 	 	 "sdb":"dc4_sdb.ttl",	
	 	 	 	 	 	 	 	 "predicates":"dc4_predicates.csv",	
	 	 	 	 	 	 	 	 "built":	 true,	
	 	 	 	 	 	 	 	 "debug":	 false,	
	 	 	 	 	 	 	 	 "environment":	 "testing"	
	 	 	 	 },	 …	 }	

 The seed setup file, dc4_setup.rdf, includes the internal data structure and

resource configurations, defining how to connect to and exploit resources in

Diseasecard’s network.

Additionally, three files must be updated with knowledge base connection

properties: one for Jena, a second for Joseki and a third for pubby. Jena and Joseki

definitions are similar and include the seed’s MySQL database connection properties.

The third file, for pubby, includes the LinkedData configurations such as the system

SPARQL endpoint and internal ontology base URIs.

Resource Configuration
COEUS allows collecting data in miscellaneous formats from local or remote data

sources. For Diseasecard’s seed, we are looking to build a semantically powerful data

network. Hence, we need to obtain a huge amount of identifier mappings. These

mappings are usually available as CSV or XML files in some sort of FTP file server.

Figure 0-2 shows Diseasecard’s data integration graph, detailing how COEUS

integration engine moves from one resource to the next. The starting resource uses

a custom connector plugin, processing OMIM’s morbid and gene maps.

Figure 0-2. Subset of Diseasecard’s integration graph. This seed uses COEUS’s flexible
integration engine to acquire data from heterogeneous and distributed CSV, XML, SQL and
SPARQL resources. The integration process generates a rich data network. For example,
starting with Breast cancer in OMIM (114480) we obtain multiple genes from HGNC database
(BRCA2, TP53...), which are used individually next to obtain a list of UniProt identifiers
(P51587, P12830...). From UniProt data we also extract PharmGKB (PA30196, PA26282...) and
PDB (2PCX, 1YCR...) identifiers, among others. This process continues until data are fully
integrated for all resources in Diseasecard’s configuration.

Each resource is configured individually in the local setup file. Once again,

Protégé use is advised to build this file, making it fairly easy to edit COEUS setup. In

this case, each concept corresponds to an external resource, being it a database or

application. The following simplified code snippets highlight the Protein Entity, the

UniProt Concept and its respective Resource.

<!-‐-‐	 Protein	 Entity	 configuration	 -‐-‐>	
<owl:NamedIndividual	
rdf:about="http://bioinformatics.ua.pt/coeus/entity_Protein">	

<rdf:type	 rdf:resource="http://bioinformatics.ua.pt/coeus/Entity"/>	
<rdfs:label	 rdf:datatype="&xsd;string">entity_protein</rdfs:label>	
<dc:title	 rdf:datatype="&xsd;string">Protein</dc:title>	
<isEntityOf	

rdf:resource="http://bioinformatics.ua.pt/coeus/concept_InterPro"/>	
<isEntityOf	

rdf:resource="http://bioinformatics.ua.pt/coeus/concept_PDB"/>	
<isEntityOf	

rdf:resource="http://bioinformatics.ua.pt/coeus/concept_PROSITE"/>	
<isEntityOf	

rdf:resource="http://bioinformatics.ua.pt/coeus/concept_UniProt"/>	
<isIncludedIn	

rdf:resource="http://bioinformatics.ua.pt/coeus/seed_Diseasecard4"/>	
</owl:NamedIndividual>	

<!-‐-‐	 UniProt	 Concept	 configuration	 -‐-‐>	
<owl:NamedIndividual	
rdf:about="http://bioinformatics.ua.pt/coeus/concept_UniProt">	

LITERATURE

PubMed

pubmed:"Breast Cancer"

DISEASE

OMIM

omim:114480

LOCUS

HGNC

hgnc:BRCA2
hgnc:ECAD

...
hgnc:TP53

LOCUS

Entrez

entrez:8438

entrez:472
...

entrez:675

PROTEIN

UniProt

uniprot:P12830
...

uniprot:P01116
uniprot:P51587 DRUG

PharmGKB

pharmgkb:PA25411
...

pharmgkb:PA26282
pharmgkb:PA30196

PROTEIN

PDB

pdb:3MVH
...

pdb:1YCR
pdb:2PCX

CSV

CSV

SQL

SPARQL

XML

XML

XML

<rdf:type	 rdf:resource="http://bioinformatics.ua.pt/coeus/Concept"/>	
<rdfs:label	 rdf:datatype="&xsd;string">concept_uniprot</rdfs:label>	
<dc:title	 rdf:datatype="&xsd;string">UniProt</dc:title>	
<hasEntity	

rdf:resource="http://bioinformatics.ua.pt/coeus/entity_Protein"/>	
<isExtendedBy	

rdf:resource="http://bioinformatics.ua.pt/coeus/resource_DrugBank"/>	
<isExtendedBy	

rdf:resource="http://bioinformatics.ua.pt/coeus/resource_InterPro"/>	
<isExtendedBy	

rdf:resource="http://bioinformatics.ua.pt/coeus/resource_MeSH"/>	
<isExtendedBy	

rdf:resource="http://bioinformatics.ua.pt/coeus/resource_PDB"/>	
<isExtendedBy	

rdf:resource="http://bioinformatics.ua.pt/coeus/resource_PROSITE"/>	
<hasResource	

rdf:resource="http://bioinformatics.ua.pt/coeus/resource_UniProt"/>	
</owl:NamedIndividual>	
	
<!-‐-‐	 UniProt	 Resource	 configuration	 -‐-‐>	
<owl:NamedIndividual	
rdf:about="http://bioinformatics.ua.pt/coeus/resource_UniProt">	

<rdf:type	 rdf:resource="http://bioinformatics.ua.pt/coeus/Resource"/>	
<rdfs:label>resource_uniprot</rdfs:label>	
<order	 rdf:datatype="&xsd;integer">2</order>	
<dc:title	 rdf:datatype="&xsd;string">UniProt</dc:title>	
<method	 rdf:datatype="&xsd;string">cache</method>	
<dc:publisher	 rdf:datatype="&xsd;string">csv</dc:publisher>	
<endpoint	 rdf:datatype="&xsd;string">http://www.genenames.org/cgi-‐

bin/hgnc_downloads.cgi?title=HGNC+output+data&hgnc_dbtag=on&col=md_
prot_id&status=Approved&status=Entry+Withdrawn&status_opt=2&
;level=pri&where=gd_app_sym+LIKE+%27#replace#%27&order_by=gd_app_sy
m_sort&limit=&format=text&submit=submit&.cgifields=&.cg
ifields=level&.cgifields=chr&.cgifields=status&.cgifields=hgnc_
dbtag</endpoint>	

	 <extends	
rdf:resource="http://bioinformatics.ua.pt/coeus/concept_HGNC"/>	

	 <isResourceOf	
rdf:resource="http://bioinformatics.ua.pt/coeus/concept_UniProt"/>	

	 <hasKey	
rdf:resource="http://bioinformatics.ua.pt/coeus/csv_UniProt_id"/>	

	 <loadsFrom	
rdf:resource="http://bioinformatics.ua.pt/coeus/csv_UniProt_id"/>	
</owl:NamedIndividual>	

Once all resources are configured correctly, the actual integration process starts,

populating Diseasecard’s knowledge base. This is envisaged as a spiralled iterative

process, where each iteration fine-tunes the previous one.

From OMIM's MorbidMap to 5 Million Triples
Diseasecard adopts a targeted warehousing strategy. This means that data are

integrated once and stays static until the following build process. Accordingly, the

data import and translation process gathers all data from external resources in a

single centralized Diseasecard knowledge base. In Diseasecard, this process starts

with a custom connector plugin to process OMIM’s data, traversing the dependency

graph for all configured resources iteratively.

During this data import process triples are generated from external data. Adding

a new semantic layer on top of existing data results in an augmented dataset. COEUS

adds several metadata relationships to each item along with the configured

resource properties. Moreover, connections are established from items to concepts,

from concepts to items and amongst items. These rich relationships are what make

semantic knowledge bases so powerful. Whereas in a CSV file we have a set of

columns with text, with the move to a semantic environment all data are

interconnected, generating a richer dataset. The same is true for SQL databases,

where foreign key relationships or table/column names are mapped to new

properties, resulting in more metadata, more relationships and more triples.

OMIM’s morbid map has around 5600 entries related to a gene map with about

12800 entries. From these maps, the graph proceeds to link multiple entities and

concepts, increasing the amount of data exponentially. The current Diseasecard

build accounts for almost 5 million triples. Leveraging on the big data network and

the additional metadata, this number grows constantly as each new resource is

integrated. Despite the 5 million triples, the knowledge base only stores around 1.5

million distinct individuals. This is further proof that collected data are deeply

intertwined, resulting in a very dense graph.

Building Diseasecard’s knowledge base highlighted some issues with COEUS

building process. The performance is severely hindered by the repetitive

connections to external web services or by complex SQL queries. Executing the

build process as a single task in a single thread takes to long to be acceptable. This

fostered the development of a basic multithreaded integration solution. The

multithreaded strategy involves processing the various resources at different levels

based on the configured dependency graph - Figure 0-3. Diseasecard’s multithread

integration solution was promptly integrated within COEUS. Nevertheless, foreseen

developments will focus on improving the code implementation for this feature.

Figure 0-3. Diseasecard build process levels. The multiple stages use a multithreaded approach
to load data from external resources, significantly improving the process efficiency and
performance.

Building the New Diseasecard’s User Interface
With Diseasecard’s triplestore populated, interoperability services are enabled. This

means that the default API methods (Java, SPARQL, REST, LinkedData, JavaScript)

are ready for us. Miscellaneous services were created to access and retrieve data

required by the client-side application (Figure 0-4).

Modern web applications employ new user interaction approaches that require

flexible server-side code and intelligent client-side code. On the server-side, the

application controller must offer easy access points to all data and, if possible, in

custom formats ready for use in the web application. The client-side should handle

most of the payload for processing data. This does not mean that browsers will

perform intensive data processing or transformation activities, but should rely

more on asynchronous data exchanges.

0

GENE

HGNCOMIM

DISEASE

 GENE

EntrezUniProt

PROTEIN

HPO

ONTOLOGY

DRUG

DrugBank

PDB

InterPro

PROTEIN

MeSH

ONTOLOGY

GENE

EnsemblProsite

PROTEIN

UMLS

ONTOLOGY

PharmGKB

DRUG

Pubmed

LITERATURE

3

2

1

Figure 0-4. The new Diseasecard workspace for Alzheimer’s Disease, OMIM code 10430026.

Diseasecard implementation uses COEUS API to apply these modern data access

paradigms. Relying on internal Java methods, Diseasecard includes multiple actions

to mediate data access from the client application to the seed’s knowledge base. For

instance, a method for retrieving a data network associated with a single OMIM

code (104300, Alzheimer’s Disease) is available at

http://bioinformatics.ua.pt/dc4/content/104300.js. This returns a JSON object with

the disease information that is used to generate, on the browser, both the sidebar

navigation tree and central navigation map. Similarly, data requests to the REST

triple service are used to load disease synonyms

(http://bioinformatics.ua.pt/dc4/api/triple/coeus:omim_104300/dc:description/ob

j/js).

These interactions use COEUS API and enable a faster web application, with

smaller data requests and improved responsiveness. Comparing the sidebar

navigation tree in the legacy Diseasecard with the new one, users had to wait for the

entire page to be processed on the server and then sent to the browser before the

webpage actually appears. In the new version, the page loads completely and

provides adequate feedback to users while the navigation tree and map are being

loaded.

26

 http://bioinformatics.ua.pt/dc4/disease/104300

Another welcome addition is the inclusion of an easier bookmarking tool. In the

current version, when Live View is triggered, the page URL is updated in the

browser, enabling the creation of bookmarks pointing directly to an external

resource within a disease context in Diseasecard (similar to WAVe’s

UniversalAccess).

With a re-engineered server side it was also essential to revamp Diseasecard’s

interface. With a sleeker design, the new Diseasecard has improved usability and

delivers a more fulfilling experience to end-users.

Features and Usability
Context-based Navigation
Diseasecard is a unique alternative for browsing biomedical rare disease

information in a centralized environment. The context-based navigation approach

enables exploring a variety of resources associated to a single disease and also

browsing disease synonyms. With these two complimentary perspectives all

significantly relevant resources associated to one or more diseases are a couple

clicks away.

The workspace includes two disease data network navigation alternatives. The

left sidebar includes a tree to quickly access all links with a familiar metaphor. The

central area displays a circular navigation map, pointing to all individual identifiers.

This map is an outstanding improvement from what was previously available,

making it one of Diseasecard’s key features. Both the navigation tree and map

trigger the Live View feature (Figure 0-5).

Figure 0-5. Diseasecard’s workspace for Alzheimer’s Disease, OMIM code 104300, highlighting
Entrez Gene entry A2M for Homo sapiens27 in LiveView.

This approach was used initially in the legacy Diseasecard and was enhanced for

WAVe. The newest Diseasecard version further improves WAVe’s approach, making

Live View more interactive, responsive and usable.

Resources Relationship Graph
To correctly explore Diseasecard’s huge amount of data and relationships we could

not rely on a static navigation system or a non-scalable navigation tree. This rich

rare disease resource relationship graph provides a unique wealth of direct and

indirect connections. Hence, a suitable approach for displaying these relationships

was required. Our choice set on the JavaScript InfoVis Toolkit28 framework (JIT).

This framework combines the power of client-side data handling with a collection

of visualization approaches based on JavaScript JSON objects and manipulations on

the DOM canvas. Figure 0-6 shows Diseasecard using JIT to expose a disease map to

users in a simple aesthetically pleasing way.

27

 http://bioinformatics.ua.pt/dc4/disease/104300#entrez:2
28

 http://thejit.org/

Figure 0-6. Diseasecard’s entry navigation graph for Alzheimer’s Disease, OMIM code 104300.
A circular navigation map was created, using the JIT visualization library, to facilitate the
access to the huge amount of linked resources.

The navigation map starts with the selected disease and connections to the set

of entities in the knowledge base. Clicking each entity name, Protein for example,

centres the map on the Protein node, highlighting its connections to its various

internal concepts. Likewise, clicking on a concept, UniProt for instance, centres the

node and shows links to each individual concept Item.

Rich Data
Selecting the adequate set of resources for phenotype-oriented information was a

crucial step towards the new Diseasecard. As expected, each resource features its

own domain, architecture and interface standards, i.e., resources are heterogeneous

and distributed. Table 7-2 list the resources and pointers integrated in the new

Diseasecard.

Table 0-2. Diseasecard integrated resources.

NODE RESOURCE DESCRIPTION
Disease NORD http://www.rarediseases.org/

NODE RESOURCE DESCRIPTION
OMIM http://www.omim.org/

Drug PharmGKB http://www.pharmgkb.org/

Literature Pubmed http://www.ncbi.nlm.nih.gov/pubmed/

Locus

Ensembl http://www.ensembl.org/

Entrez http://www.ncbi.nlm.nih.gov/gene/

GeneCards http://www.genecards.org/

HGNC http://www.genenames.org/

Ontology GO http://amigo.geneontology.org/

Protein

UniProt/SwissProt http://www.uniprot.org/

UniProt/TrEMBL http://www.uniprot.org/

PDB http://www.pdb.org/

Expasy http://expasy.org/

InterPro http://www.ebi.ac.uk/interpro/

Variome WAVe http://bioinformatics.ua.pt/WAVe

One of COEUS major features is the prompt availability of interoperability

services. In Diseasecard, the services required for accessing data are enabled by

default.

The wealth of data collected during the data integration process is available

through REST services, a SPARQL endpoint and a LinkedData view. Furthermore, the

REST services and SPARQL endpoint are already used within Diseasecard client-side

application.

Considering the constructed knowledge base a single platform without

Diseasecard’s web application, it is, per se, a single unique resource for the rare

disease community. Life sciences developers can exploit this data collection to build

or extend existing applications.

From a modern application perspective, Diseasecard can also be seen as platform

with multiple applications. While for now only a web information system is

available, COEUS robustness permits deploying applications targeted at the desktop

or mobile devices, using the same set of APIs and accessing the original knowledge

base.

The rare diseases dataset build using COEUS flexible integration engine results

in a strikingly rich semantic knowledge base. This opens the room for further

exploratory endeavours, namely using reasoning and inference. Whilst these

features are not yet a part of the new Diseasecard, they will be made available

through innovative user interactions in Diseasecard’s web workspace.

Discussion
A Suitable Software Infrastructure for each Bioinformatician
As the miscellaneous "omics" fields branch new domains and research

specializations, the technological needs for each field revolve around a common set

of problems. Managing data, accessing and integrating information from other

laboratories, or providing recently discovered knowledge to others are essential

steps in the path of making science.

While it is nearly impossible to satisfy the requirements from all life sciences

research fields, we can promote the use of technologies and tools that facilitate

accomplishing all of the project's software-related goals. In a broad sense, this is our

main objective with the COEUS framework.

The COEUS platform is a powerful development environment. Its scalability and

flexibility make it ideal for highly heterogeneous scenarios and apt for the

challenging requirements associated with particular "omics" fields. In fact, COEUS

targets the improvement of niche fields, empowering amateur and professional

developers with the tools to quickly model, integrate and publish data. Furthermore,

the semantic web ideals span through all framework's components, from the

integration of data to the interoperability with other tools. This provides limitless

resource integration architectures with advanced data exploration features. With

the former we are able to triplify almost all existing data into a new richer

knowledge base and, complementarily, with the latter, we are able to access

collected data by multiple means. This enables the creation of custom application

ecosystems with comprehensive architectures. Bioinformaticians can program

interfaces in any language and easily target web, desktop or mobile environments.

Furthermore, by publishing data through the SPARQL and LinkedData interfaces,

new systems will be part of the global web of knowledge. With the widespread use

of COEUS and other similar tools, we expect that each bioinformatician can create

its own technological infrastructure that goes beyond the boundaries of project-

specific internal use.

Whereas the strategies adopted in the EU-ADR Web Platform and WAVe

consisted in the adoption of traditional relational databases, COEUS empowers the

creation of semantic knowledge bases. This enables a whole new level of knowledge

exploration through the aforementioned SPARQL and LinkedData interfaces that

allow the creation of complex knowledge reasoning and inference features.

Diseasecard’s dataset has innate semantics; collected data has an undisclosed

meaning that can be explored to obtain new vital connections between genes and

diseases. Likewise, COEUS brings this semantic web layer, and its underlying

semantic features, to all bioinformaticians in any life sciences field.

Applying COEUS to the Rare Diseases Research Field
Research on rare diseases is of growing importance in the last couple of years.

Uncovering the underlying genetic causes of rare diseases is the first step towards a

better comprehension of our health, making us one step closer of the individualized

healthcare panacea. Moreover, the funding and interest in large-scale rare disease

projects has been renewed, namely within the European Union.

Since 2004, Diseasecard has been contributing to this research field by providing

a portal with information regarding rare diseases and connections to a myriad of

resources contextualized to each disease. Despite its quality, the legacy Diseasecard

is an out-dated system, with an architecture that is no longer efficient for the

current bioinformatics landscape. With COEUS, we have the opportunity to

overcome the original Diseasecard's caveats, deploying a richer application, with a

reengineered architecture and re-designed user interface. As previously mentioned,

the combination of rapid application development with biomedical semantics is a

key enabler of the next-generation of bioinformatics and the new Diseasecard is the

first step towards this bright future.

The new Diseasecard, powered by COEUS, improves on the legacy version in

three distinct aspects, discussed next.

 With a semantic knowledge base supporting the application, collected and

connected data are richer and more meaningful. Whilst these capabilities are

not yet fully explored, the open possibilities are immense. Establishing new

relationships between OMIM's disease data and multiple ontologies or

external resources generates a comprehensive rare disease dataset, enabling

the inference of unique connections that would not be possible to obtain

otherwise.

 Data in the knowledge base are now interoperable using COEUS default API.

REST services, a SPARQL endpoint and a LinkedData interface are available

for others to explore the dense rare disease data graph compiled in the new

Diseasecard.

 The new Diseasecard web workspace is a significant improvement over the

legacy version. Disease synonyms, the navigation tree and the new

navigation graph present a more interactive and usable interface.

Diseasecard is the first COEUS instance and represents our initial endeavour

towards the future of web-based biomedical applications. The new Diseasecard is

available online at http://bioinformatics.ua.pt/dc4/.

